
Communications Blockset™ 4
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Communications Blockset™ User’s Guide

© COPYRIGHT 2001–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2001 Online only New for Version 2.0.1 (Release 12.1)
July 2002 First printing Revised for Version 2.5 (Release 13)
June 2004 Online only Revised for Version 3.0 (Release 14)
October 2004 Online only Revised for Version 3.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.1 (Release 14SP2)
September 2005 Online only Revised for Version 3.2 (Release 14SP3)
March 2006 Online only Revised for Version 3.3 (Release 2006a)
September 2006 Online only Revised for Version 3.4 (Release 2006b)
March 2007 Online only Revised for Version 3.5 (Release 2007a)
September 2007 Online only Revised for Version 3.6 (Release 2007b)
March 2008 Online only Revised for Version 4.0 (Release 2008a)

Contents

Using the Libraries

1
Accessing the Libraries . 1-3

Signal Support . 1-4
Section Overview . 1-4
Signal Terminology . 1-4
Processing Matrices, Vectors, and Scalars 1-5
Processing Frame-Based and Sample-Based Signals 1-7

Communications Sources . 1-9
Section Overview . 1-9
Random Data Sources . 1-9
Random Noise Generators . 1-10
Sequence Generators . 1-11
Sequence Generator Examples . 1-13
Block Parameters . 1-19

Communications Sinks . 1-23
Section Overview . 1-23
Error Statistics . 1-23
Scopes . 1-24
Example: Viewing a Sinusoid . 1-25
Example: Viewing a Modulated Signal 1-28

Source Coding . 1-36
Section Overview . 1-36
Representing Quantization Parameters 1-37
Quantizing a Signal . 1-38
Companding a Signal . 1-42
Selected Bibliography for Source Coding 1-44

Block Coding . 1-45
Section Overview . 1-45
Block-Coding Features of the Blockset 1-46

v

Communications Toolbox Support Functions 1-46
Channel-Coding Terminology . 1-47
Data Formats for Block Coding . 1-47
Using Block Encoders and Decoders Within a Model 1-50
Examples of Block Coding . 1-50
Notes on Specific Block-Coding Techniques 1-54
Shortening, Puncturing, and Erasures 1-57
Selected Bibliography for Block Coding 1-61

Convolutional Coding . 1-62
Section Overview . 1-62
Convolutional-Coding Features of the Blockset 1-62
Parameters for Convolutional Coding 1-63
Example: A Rate 2/3 Feedforward Encoder 1-64
Implementing a Systematic Encoder with Feedback 1-67
Example: Soft-Decision Decoding . 1-68
Selected Bibliography for Convolutional Coding 1-76

Cyclic Redundancy Check Coding 1-78
Section Overview . 1-78
CRC-Coding Features of the Blockset 1-78
CRC Algorithm . 1-79
Selected Bibliography for CRC Coding 1-80

Interleaving . 1-81
Section Overview . 1-81
Block Interleavers . 1-81
Convolutional Interleavers . 1-85
Selected Bibliography for Interleaving 1-90

Analog Modulation . 1-91
Section Overview . 1-91
Analog Modulation Features of the Blockset 1-91
Representing Signals for Analog Modulation 1-92
Sampling Issues in Analog Modulation 1-92
Filter Design Issues . 1-93

Digital Modulation . 1-97
Section Overview . 1-97
Accessing Digital Modulation Blocks 1-97
Digital Modulation Features of the Blockset 1-98
Baseband Modulated Signals . 1-100

vi Contents

Representing Signals for Digital Modulation 1-100
Delays in Digital Modulation . 1-102
Upsampled Signals and Rate Changes 1-105
Examples of Digital Modulation . 1-108
Setting Noise Variance for Computing LLRs 1-115
Selected Bibliography for Digital Modulation 1-117

Communications Filters . 1-119
Section Overview . 1-119
Filter Features of the Blockset . 1-119
Group Delay of a Filter . 1-120
Filtering with Raised Cosine Filter Blocks 1-122
Example: Using Raised Cosine Filters 1-123
Selected Bibliography for Communications Filters 1-125

Channels . 1-126
Section Overview . 1-126
AWGN Channel . 1-126
Fading Channels . 1-127
Binary Symmetric Channel . 1-129
Selected Bibliography for Channels 1-130

RF Impairments . 1-131
Section Overview . 1-131
Types of RF Impairments that the Blocks Model 1-131
Scatter Plot Examples . 1-132
Example Using the RF Impairments Library Blocks 1-138

Synchronization . 1-142
Section Overview . 1-142
Timing Phase Recovery . 1-143
Supported Algorithms for Timing Phase Recovery 1-143
Feedforward Method for Timing Phase Recovery 1-144
Feedback Methods for Timing Phase Recovery 1-144
Choosing a Method for Timing Phase Recovery 1-146
Examples of Timing Phase Recovery 1-149
Squaring Timing Phase Recovery Example 1-150
Carrier Phase Recovery . 1-153
Supported Algorithms for Carrier Phase Recovery 1-154
Carrier Phase Recovery Example . 1-154
Components . 1-160
Selected Bibliography for Synchronization 1-163

vii

Equalizers . 1-164
Section Overview . 1-164
Sources of Background Material . 1-164
Equalization Features of the Blockset 1-165
Using Adaptive Equalizers . 1-165
Example: LMS Linear Equalizer . 1-168
Using MLSE Equalizers . 1-171

Modeling Communication Systems

2
Computing Delays . 2-2

Section Overview . 2-2
Other References for Delays . 2-2
Sources of Delays . 2-3
ADSL Demo Model . 2-3
Punctured Coding Model . 2-6
Using the Find Delay and Align Signals Blocks 2-10

Manipulating Delays . 2-14
Section Overview . 2-14
Delays and Alignment Problems . 2-14
Aligning Words of a Block Code . 2-18
Aligning Words for Interleaving . 2-20
Aligning Words of a Concatenated Code 2-23

Data Type Support

3
Communications Block Data Type Support 3-2

viii Contents

Block Properties Related to Simulink and
Real-Time Workshop

4
Communications Blocks in Triggered Subsystems 4-2

Section Overview . 4-2
Example 1: A Basic Triggered Subsystem 4-2
Example 2: Importance of the Block Location 4-5

Communications Block Properties 4-8

Index

ix

x Contents

1

Using the Libraries

This chapter describes and illustrates how to model communication
techniques using the blocks in Communications Blockset™. Most sections
correspond to core libraries within the blockset.

Accessing the Libraries (p. 1-3) How to access libraries in
Communications Blockset

Signal Support (p. 1-4) The types of signals that this
blockset supports

Communications Sources (p. 1-9) Sources of random and nonrandom
data

Communications Sinks (p. 1-23) Error statistics and plotting

Source Coding (p. 1-36) Quantization, companding, and
differential coding

Block Coding (p. 1-45) Reed-Solomon, BCH, and other block
codes

Convolutional Coding (p. 1-62) Convolutional codes and Viterbi
decoding

Cyclic Redundancy Check Coding
(p. 1-78)

Detecting errors using CRC codes

Interleaving (p. 1-81) Block and convolutional interleavers

Analog Modulation (p. 1-91) Analog passband modulation
methods

Digital Modulation (p. 1-97) Digital baseband modulation
methods

Communications Filters (p. 1-119) Filtering and pulse shaping

1 Using the Libraries

Channels (p. 1-126) Modeling channel impairments

RF Impairments (p. 1-131) Modeling impairments caused by the
radio frequency components

Synchronization (p. 1-142) Phase recovery methods and
phase-locked loops

Equalizers (p. 1-164) Adaptive and MLSE equalizers

1-2

Accessing the Libraries

Accessing the Libraries
You can access the main library of Communications Blockset by entering

commlib

in the MATLAB® Command Window.

From the main library, you can access sublibraries by double-clicking their
icons.

On Windows platforms, you can also use the Simulink® Library Browser to
access libraries of Communications Blockset. To open the Simulink Library
Browser, enter simulink in the MATLAB Command Window.

1-3

1 Using the Libraries

Signal Support

In this section...

“Section Overview” on page 1-4

“Signal Terminology” on page 1-4

“Processing Matrices, Vectors, and Scalars” on page 1-5

“Processing Frame-Based and Sample-Based Signals” on page 1-7

Section Overview
Simulink® supports matrix signals and one-dimensional arrays, and
frame-based and sample-based signals. This section describes how
Communications Blockset processes certain kinds of matrix and frame-based
signals.

Signal Terminology
This section defines important terms related to matrix and frame-based
signals.

Matrices, Vectors, and Scalars
This document uses the unqualified words scalar and vector in ways that
emphasize a signal’s number of elements, not its strict dimension properties:

• A scalar signal is one that contains a single element. The signal could be a
one-dimensional array with one element, or a matrix of size 1-by-1.

• A vector signal is one that contains one or more elements, arranged in a
series. The signal could be a one-dimensional array, a matrix that has
exactly one column, or a matrix that has exactly one row. The number of
elements in a vector is called its length or, sometimes, its width.

In cases when it is important for a description or schematic to distinguish
among different types of scalar signals or different types of vector signals,
this document mentions the distinctions explicitly. For example, the terms
one-dimensional array, column vector, and row vector distinguish among
three types of vector signals.

1-4

Signal Support

The size of a matrix is the pair of numbers that indicate how many rows
and columns the matrix has. The orientation of a two-dimensional vector is
its status as either a row vector or column vector. A one-dimensional array
has no orientation.

A matrix signal that has more than one row and more than one column is
called a full matrix signal.

Frame-Based and Sample-Based Signals
In Simulink, each matrix signal has a frame attribute that declares the signal
to be either frame-based or sample-based, but not both. (A one-dimensional
array signal is always sample-based, by definition.) Simulink indicates the
frame attribute visually by using a double connector line in the model window
instead of a single connector line. In general, Simulink interprets frame-based
and sample-based signals as follows:

• A frame-based signal in the shape of an M-by-1 (column) matrix represents
M successive samples from a single time series.

• A frame-based signal in the shape of a 1-by-N (row) matrix represents a
sample of N independent channels, taken at a single instant in time.

• A sample-based matrix signal might represent a set of bits that collectively
represent an integer, or a set of symbols that collectively represent a
codeword, or something else other than a fragment of a single time series.

Processing Matrices, Vectors, and Scalars
These rules indicate the shapes of sample-based signals that Communications
Blockset blocks can process:

• Most blocks do not process matrix signals that have more than one row
and more than one column.

• In their numerical computations, blocks that process scalars do not
distinguish between one-dimensional scalars and one-by-one matrices. If
the block produces a scalar output from a scalar input, the block preserves
dimension.

• If a block can process sample-based vectors,

1-5

1 Using the Libraries

- The numerical computations do not distinguish between one-dimensional
arrays, M-by-1 matrices, and 1-by-N matrices.

- The block output preserves dimension and orientation.

- The block treats elements of the input vector as a collection that arises
naturally from the block’s operation (for example, a collection of symbols
that jointly represent a codeword), or as samples from independent
channels. The block does not assume that the elements of the input
vector are successive samples from a single time series.

Some blocks process vectors but require them to be frame-based. For
more information about processing frame-based signals, see “Processing
Frame-Based and Sample-Based Signals” on page 1-7.

To find out whether a block processes scalar signals, vector signals, or both,
refer to its entry in the reference section.

Illustrations of Scalar and Vector Processing
The figures below depict the preservation of dimension and orientation when
a block processes scalars (without oversampling) and vectors. To display
signal dimensions in your model, turn on the Signal dimensions option in
the Port/signal displays submenu of the model window’s Format menu.

1-6

Signal Support

Processing Frame-Based and Sample-Based Signals
All one-dimensional arrays are sample-based, but a matrix signal can be
either frame-based or sample-based. A frame-based signal in the shape of an
N-by-1 matrix represents a series of N successive samples from a single time
series. Communications Blockset processes some frame-based signals and
is compatible with Signal Processing Blockset. However, Communications
Blockset omits some frame-based features, and many blocks are not
specifically optimized for frame-based processing.

These rules indicate how most Communications Blockset blocks handle
frame-based matrix signals:

• Most blocks do not process frame-based matrix signals that have more than
one row and more than one column.

• Most blocks do not process frame-based row vectors and do not support
multichannel functionality.

• Blocks that process continuous-time signals do not process frame-based
inputs. Such blocks include the analog modulation blocks and the analog
phase-locked loop blocks.

1-7

1 Using the Libraries

• Blocks for which a frame-based multichannel operation makes sense, even
if the blocks do not currently support such operation, reject sample-based
vectors because their interpretation is ambiguous.

Frame-based vectors, however, have an unambiguous interpretation.
Blocks interpret a frame-based row vector as multiple channels at a single
instant of time, and interpret a frame-based column vector as multiple
samples from a single time series (that is, a single channel).

• Some blocks, such as the digital baseband modulation blocks, can produce
multiple output values for each value of a scalar input signal. In such cases,
a frame-based 1-by-1 matrix input results in a frame-based column vector
output. By contrast, a sample-based scalar input results in a sample-based
scalar output with a smaller sample time.

1-8

Communications Sources

Communications Sources

In this section...

“Section Overview” on page 1-9

“Random Data Sources” on page 1-9

“Random Noise Generators” on page 1-10

“Sequence Generators” on page 1-11

“Sequence Generator Examples” on page 1-13

“Block Parameters” on page 1-19

Section Overview
Every communication system contains one or more sources. You can find
sources in the Simulink Sources library, in the Signal Processing Sources
library, and in the Communications Blockset’s Comm Sources library.

You can open the Comm Sources library by double-clicking its icon in the
main Communications Blockset library.

Blocks in the Comm Sources library can

• Generate random data

• Generate random noise to simulate channels

• Generate sequences that can be used for spreading or synchronization
in a communication system

This section describes these capabilities, considering first random and then
nonrandom signals.

Random Data Sources
Blocks in the Random Data Sources sublibrary of the Comm Sources library
generate random data to simulate signal sources. You can use blocks in the
Random Data Sources sublibrary to generate

1-9

1 Using the Libraries

• Random bits

• Random integers

In addition, you can use built-in Simulink blocks such as the Random Number
block as a data source.

You can open the Random Data Sources sublibrary by double-clicking its icon
(found in the Comm Sources library of the main Communications Blockset
library).

Random Bits
The Bernoulli Binary Generator block generates random bits and is suitable
for representing sources. The block considers each element of the signal to
be an independent Bernoulli random variable. Also, different elements need
not be identically distributed.

Random Integers
The Random Integer Generator and Poisson Integer Generator blocks both
generate vectors containing random nonnegative integers. The Random
Integer Generator block uses a uniform distribution on a bounded range that
you specify in the block mask. The Poisson Integer Generator block uses a
Poisson distribution to determine its output. In particular, the output can
include any nonnegative integer.

Random Noise Generators
Blocks in the Noise Generators sublibrary of the Comm Sources library
generate random data to simulate channel noise. You can use blocks in the
Noise Generators sublibrary to generate random real numbers, depending on
what distribution you want to use. The choices are listed in the following table.

Distribution Block

Gaussian Gaussian Noise Generator

Rayleigh Rayleigh Noise Generator

Rician Rician Noise Generator

Uniform on a bounded interval Uniform Noise Generator

1-10

Communications Sources

You can open the Noise Generators sublibrary by double-clicking its icon in
the main Communications Blockset library.

Sequence Generators
You can use blocks in the Sequence Generators sublibrary of the
Communications Sources library to generate sequences for spreading or
synchronization in a communication system. You can open the Sequence
Generators sublibrary by double-clicking its icon in the main Communications
Blockset library.

Blocks in the Sequence Generators sublibrary generate

• Pseudorandom sequences

• Synchronization codes

• Orthogonal codes

Pseudorandom Sequences
The following table lists the blocks that generate pseudorandom or
pseudonoise (PN) sequences. The applications of these sequences range
from multiple-access spread spectrum communication systems to ranging,
synchronization, and data scrambling.

Sequence Block

Gold sequences Gold Sequence Generator

Kasami sequences Kasami Sequence Generator

PN sequences PN Sequence Generator

All three blocks use shift registers to generate pseudorandom sequences. The
following is a schematic diagram of a typical shift register.

1-11

1 Using the Libraries

����

��� ��� �

�� ����

���� ���� ��

�� ��

	
��
�

��� ��� ���

All r registers in the generator update their values at each time step according
to the value of the incoming arrow to the shift register. The adders perform
addition modulo 2. The shift register can be described by a binary polynomial
in z, grz

r + gr-1z
r-1 + ... + g0. The coefficient gi is 1 if there is a connection from

the ith shift register to the adder, and 0 otherwise.

The Kasami Sequence Generator block and the PN Sequence Generator
block use this polynomial description for their Generator polynomial
parameter, while the Gold Sequence Generator block uses it for the Preferred
polynomial [1] and Preferred polynomial [2] parameters.

The lower half of the preceding diagram shows how the output sequence can
be shifted by a positive integer d, by delaying the output for d units of time.
This is accomplished by a single connection along the dth arrow in the lower
half of the diagram.

See “Pseudorandom Sequences” on page 1-13 for an example that uses these
blocks.

Synchronization Codes
The Barker Code Generator block generates Barker codes to perform
synchronization. Barker codes are subsets of PN sequences. They are short
codes, with a length at most 13, which are low-correlation sidelobes. A

1-12

Communications Sources

correlation sidelobe is the correlation of a codeword with a time-shifted
version of itself.

Orthogonal Codes
Orthogonal codes are used in systems in which the receiver is perfectly
synchronized with the transmitter. For such systems, the despreading
operation is ideal when orthogonal codes are used for the spreading. For
example, they are used in the forward link of the IS-95 system, in which the
base station transmits a pilot signal to help the receiver gain synchronization.

Code Block

Hadamard codes Hadamard Code Generator

OVSF codes OVSF Code Generator

Walsh codes Walsh Code Generator

See “Orthogonal Sequences” on page 1-17 for an example that uses these
blocks.

Sequence Generator Examples
This section presents two example models that illustrate the blocks in the
Sequence Generators library.

• “Pseudorandom Sequences” on page 1-13

• “Orthogonal Sequences” on page 1-17

Pseudorandom Sequences
This example describes the autocorrelation properties of the pseudorandom
sequences generated by the following three blocks:

• PN Sequence Generator

• Gold Sequence Generator

• Kasami Sequence Generator

1-13

1 Using the Libraries

If you are reading this in the MATLAB® Help Browser, click here to open
the model.

The model displays the output sequences of the three blocks in a scope.
All three blocks have the same Generator polynomial parameter,
[1 0 0 0 0 1 1], whose digits are the coefficients of the polynomial
x6 + x + 1. Since this polynomial has degree 6, the output sequence has
period 26 - 1 = 63.

When you run the model, the scope displays two periods of data for each of the
three signals, as in the following figure.

1-14

Communications Sources

The model also sends the output sequences to the MATLAB workspace as the
vectors pn, gold, and kas. You can verify the autocorrelation properties of
the output of the PN Sequence Generator block by entering the following at
the MATLAB prompt:

x = pn(1:63); % Take one period only.
x = 1 - 2.*x; % Convert to bipolar.
for i = 1:63 % Determine the cyclic autocorrelation.

corrvec(i) = x' * [x(i:end); x(1:i-1)];
end
corrvals = unique(sort(corrvec)) % Choose the unique values.

This code calculates the cyclic autocorrelation of the PN sequence, by taking
the inner product of one period of the sequence with each of its 63 cyclic
rotations, and stores the results in a vector, corrvec, of length 63. The code
then sorts the entries of corrvec and finds the unique autocorrelation values.

1-15

1 Using the Libraries

The result is

corrvals =
-1 63

The first entry of the vector corrvec is 63, while all other values are -1, as
you can verify by entering corrvec at the MATLAB prompt. This means
that 63 occurs only by taking the inner product of the sequence pn with an
unrotated copy of itself. All other inner products have the value -1.

You can analyze the output sequences of the Gold Sequence Generator block
and the Kasami Sequence Generator block similarly by changing the first
line of the preceding code to

x = gold(1:63);

and

x = kas(1:63);

respectively.

For the Gold and Kasami sequences, the autocorrelation takes on three
values. For example, the values for the Gold sequence are

corrvals =
-17 -1 15 63

The values for the Kasami sequence are

corrvals =
-9 -1 7 63

Of the three types of sequences, the PN sequences are best suited for
synchronization because the autocorrelation takes on just two values.
However, the Gold and Kasami sequences provide a larger number of
sequences with good cross-correlation properties than do the PN sequences.

The peak value of corrvals for the Kasami sequence is less than the peak
value for the Gold sequence. In fact, the small set of Kasami sequences

1-16

Communications Sources

satisfies the lower bounds for correlation values, and for this reason they are
also referred to as optimal sequences.

Orthogonal Sequences
This example demonstrates the orthogonality of pairs of sequences generated
using different Code index parameters, for each of the following three blocks:

• Hadamard Code Generator

• Walsh Code Generator

• OVSF Code Generator

If you are reading this in the MATLAB Help Browser, click here to open the
model.

The model displays the output sequences of the three blocks in a scope. All
three blocks output sequences of period 64, corresponding to their Code
length parameters. When you run the model, the scope displays two periods
of data for each sequence.

1-17

1 Using the Libraries

The following script runs the model twice, the first time with the Code
index parameter of 60 for all three blocks, and the second time with a Code
index of 30. The script then calculates, for each of the three blocks, the
cross-correlation between the sequence generated by the first run and the
sequence generated by the second run.

% Simulate once.
set_param('doc_ortho/Hadamard Code Generator', 'index', '60');
set_param('doc_ortho/Walsh Code Generator', 'index', '60');
set_param('doc_ortho/OVSF Code Generator', 'index', '60');
sim('doc_ortho');

% Store the codes.
had60 = had(1:64);
walsh60 = walsh(1:64);
ovsf60 = ovsf(1:64);

% Simulate again.

1-18

Communications Sources

set_param('doc_ortho/Hadamard Code Generator', 'index', '31');
set_param('doc_ortho/Walsh Code Generator', 'index', '31');
set_param('doc_ortho/OVSF Code Generator', 'index', '31');
sim('doc_ortho');

% Store the codes.
had31 = had(1:64);
walsh31 = walsh(1:64);
ovsf31 = ovsf(1:64);

% Calculate the cross-correlation.
hadcorr = had60(1:64)'*had31(1:64);
hadcorr
walshcorr = walsh60(1:64)'*walsh31(1:64);
walshcorr
ovsfcorr = ovsf60(1:64)'*ovsf31(1:64);
ovsfcorr

The results are

haddcorr=
0
walshcorr =
0
ovsfcorr =
0

The results show that for each block, the sequence generated by the first run
is orthogonal to the sequence generated by the second run.

Block Parameters
This section discusses the sample time parameter, seed parameter, and signal
attribute parameters that are common to many random source blocks, and
then discusses each category of random source.

Sample Time Parameter for Random Sources
Each of the random source blocks requires you to set a Sample time
parameter in the block mask. If you configure the block to produce a

1-19

1 Using the Libraries

sample-based signal, this parameter is the time interval between successive
updates of the signal. If you configure the block to produce a frame-based
matrix signal, the Sample time parameter is the time interval between
successive rows of the frame-based matrix.

If you use a Simulink Probe block to query the period of a frame-based output
from a random source block in the Comm Sources library, note that the Probe
block reports the period of the entire frame, not the period of each sample in
a given channel of the frame. The following equation relates the quantities
involved for a single-channel signal:

A seconds/frame = (B seconds/sample)*(S samples/frame)

where

• A is the number shown in the Probe block after the Tf notation.

• B is the random source block’s Sample time parameter.

• S is the random source block’s Samples per frame parameter.

Seed Parameter
The blocks in the Communication Sources library that generate random data
require you to set a seed in the block mask. This is the initial seed that the
random number generator uses when forming its sequence of numbers. Make
sure that initial seeds in different blocks in a model have different values, so
that they generate statistically independent sequences.

Signal Attribute Parameters for Random Sources
In most random source blocks, the output can be a frame-based matrix, a
sample-based row or column vector, or a sample-based one-dimensional array.
The following table indicates how to set certain block parameters depending
on the kind of signal you want to generate.

1-20

Communications Sources

Signal Attributes Parameter Settings

Sample-based,
one-dimensional

Sample-based row vector

Also, any vector parameters in the block should
be rows, not columns.

Sample-based column
vector

Also, any vector parameters in the block should
be columns, not rows.

Frame-based

Also, set Samples per frame to the number
of samples in each output frame, that is, the
number of rows in the signal.

The Frame-based outputs and Interpret vector parameters as 1-D
check boxes are mutually exclusive, because frame-based signals and
one-dimensional signals are mutually exclusive. The Samples per frame
parameter field is active only if the Frame-based outputs check box is
checked.

1-21

1 Using the Libraries

Example. The model in the following figure illustrates that one random
source block can produce various kinds of signals. The annotations in
the model indicate how each copy of the block is configured. Each block’s
configuration affects the type of connector line (single or double) and the
signal dimensions that appear above each connector line. In the case of the
Rayleigh Noise Generator block, the first two block parameters (Sigma and
Initial seed) determine the number of channels in the output; for analogous
indicators in other random source blocks, see their individual reference
entries.

The particular mask parameters depend on the block. See each block’s
reference page for details.

1-22

Communications Sinks

Communications Sinks

In this section...

“Section Overview” on page 1-23

“Error Statistics” on page 1-23

“Scopes” on page 1-24

“Example: Viewing a Sinusoid” on page 1-25

“Example: Viewing a Modulated Signal” on page 1-28

Section Overview
Communications Blockset provides sinks and display devices that facilitate
analysis of communication system performance. You can open the Comm
Sinks library by double-clicking its icon in the main Communications Blockset
library.

Error Statistics
The Error Rate Calculation block compares input data from a transmitter
with input data from a receiver. It calculates these error statistics:

• Error rate

• Number of error events

• Total number of input events

The block reports these statistics either as final values in the workspace or as
running statistics at an output port.

You can use this block either with binary inputs to compute the bit error
rate, or with symbol inputs to compute the symbol error rate. You can use
frame-based or sample-based data. If you use frame-based data, you can have
the block consider certain samples and ignore others.

The example in the section “Example: Soft-Decision Decoding” on page 1-68
illustrates the use of the Error Rate Calculation block.

1-23

1 Using the Libraries

Scopes
The Sinks library contains scopes for viewing three types of signal plots:

• “Eye Diagrams” on page 1-24

• “Scatter Plots” on page 1-25

• “Signal Trajectories” on page 1-25

The following table lists the scope blocks and the plots they generate.

Block Name Plots

Discrete-Time Eye Diagram Scope Eye diagram of a discrete signal

Discrete-Time Scatter Plot Scope Scatter plot of a discrete signal

Discrete-Time Signal Trajectory
Scope

Signal trajectory of a discrete signal

Eye Diagrams
An eye diagram is a simple and convenient tool for studying the effects
of intersymbol interference and other channel impairments in digital
transmission. When this blockset constructs an eye diagram, it plots the
received signal against time on a fixed-interval axis. At the end of the fixed
interval, it wraps around to the beginning of the time axis. As a result, the
diagram consists of many overlapping curves. One way to use an eye diagram
is to look for the place where the “eye” is most widely opened, and use that
point as the decision point when demapping a demodulated signal to recover a
digital message.

The Discrete-Time Eye Diagram Scope block produces eye diagrams. This
block processes discrete-time signals. and periodically draws a line to indicate
a decision, according to a mask parameter.

Examples appear in “Example: Viewing a Sinusoid” on page 1-25 and
“Example: Viewing a Modulated Signal” on page 1-28.

1-24

Communications Sinks

Scatter Plots
A scatter plot of a signal plots the signal’s value at its decision points. In the
best case, the decision points should be at times when the eye of the signal’s
eye diagram is the most widely open.

The Discrete-Time Scatter Plot Scope block produces scatter plots from
discrete-time signals. An example appears in “Example: Viewing a Sinusoid”
on page 1-25.

Signal Trajectories
A signal trajectory is a continuous plot of a signal over time. A signal
trajectory differs from a scatter plot in that the latter displays points on the
signal trajectory at discrete intervals of time.

The Discrete-Time Signal Trajectory Scope block produces signal trajectories.
Unlike the Discrete-Time Scatter Plot Scope block, which displays points on
the trajectory at discrete time intervals corresponding to the decision points,
the Discrete-Time Signal Trajectory Scope displays a continuous picture of
the signal’s trajectory between decision points.

Example: Viewing a Sinusoid
The following model produces a scatter plot and an eye diagram from a
complex sinusoidal signal. Because the decision time interval is almost,
but not exactly, an integer multiple of the period of the sinusoid, the eye
diagram exhibits drift over time. More specifically, successive traces in the
eye diagram and successive points in the scatter diagram are near each other
but do not overlap.

1-25

1 Using the Libraries

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Sine Wave, in the Signal Processing Sources library (not the Sine Wave
block in the Simulink Sources library)

- Set Frequency to .502.

- Set Output complexity to Complex.

- Set Sample time to 1/16.

• Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- On the Plotting Properties panel, set Samples per symbol to 16.

- On the Figure Properties panel, set Scope position to
figposition([2.5 55 35 35]);.

• Discrete-Time Eye Diagram Scope, in the Comm Sinks library

- On the Plotting Properties panel, set Samples per symbol to 16.

- On the Figure Properties panel, set Scope position to
figposition([42.5 55 35 35]);.

Connect the blocks as shown in the preceding figure. From the model
window’s Simulation menu, choose Configuration parameters; in the
Configuration Parameters dialog box, set Stop time to 250. Running the
model produces the following scatter diagram plot.

1-26

Communications Sinks

The points of the scatter plot lie on a circle of radius 1. Note that the points
fade as time passes. This is because the box next to Color fading is checked
under Rendering Properties, which causes the scope to render points more
dimly the more time that passes after they are plotted. If you clear this box,
you see a full circle of points.

If you add the Discrete-Time Signal Trajectory Scope block to the model, it
displays a circular trajectory.

In the eye diagram, the upper set of traces represents the real part of the
signal and the lower set of traces represents the imaginary part of the signal.

1-27

1 Using the Libraries

Example: Viewing a Modulated Signal
This multipart example creates an eye diagram, scatter plot, and signal
trajector plot for a modulated signal. It examines the plots one by one in
these sections:

• “Eye Diagram of a Modulated Signal” on page 1-28

• “Scatter Plot of a Modulated Signal” on page 1-32

• “Signal Trajectory of a Modulated Signal” on page 1-33

Eye Diagram of a Modulated Signal
The following model modulates a random signal using QPSK, filters the signal
with a raised cosine filter, and creates an eye diagram from the filtered signal.

1-28

Communications Sinks

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure the following blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 4.

- Set Sample time to to 0.01.

• QPSK Modulator Baseband, in PM in the Digital Baseband sublibrary
of the Modulation library of Communications Blockset, with default
parameters

• AWGN Channel, in the Channels library of Communications Blockset, with
the following changes to the default parameter settings:

- Set Mode to Signal-to-noise ratio (SNR).

- Set SNR (dB) to 15.

• Raised Cosine Transmit Filter, in the Comm Filters library

- Set Filter type to Normal.

- Set Group delay to 3.

- Set Rolloff factor to 0.5.

- Set Input sampling mode to Sample-based.

- Set Upsampling factor to 8.

• Discrete-Time Eye Diagram Scope, in the Comms Sinks library

- Set Samples per symbol to 8.

- Set Symbols per trace to 3. This specifies the number of symbols that
are displayed in each trace of the eye diagram. A trace is any one of the
individual lines in the eye diagram.

1-29

1 Using the Libraries

- Set Traces displayed to 3.

- Set New traces per display to 1. This specifies the number of new
traces that appear each time the diagram is refreshed. The number of
traces that remain in the diagram from one refresh to the next is Traces
displayed minus New traces per display.

- On the Rendering Properties panel, set Markers to + to indicate the
points plotted at each sample. The default value of Markers is empty,
which indicates no marker.

- On the Figure Properties panel, set Eye diagram to display to
In-phase only.

When you run the model, the Discrete-Time Eye Diagram Scope displays the
following diagram. Your exact image varies depending on when you pause or
stop the simulation.

Three traces are displayed. Traces 2 and 3 are faded because the Color
fading check box under Rendering Properties is selected. This causes
traces to be displayed less brightly the older they are. In this picture, Trace
1 is the most recent and Trace 3 is the oldest. Because New traces per
display is set to 1, only Trace 1 is appearing for the first time. Traces 2 and 3
also appear in the previous display.

Because Symbols per trace is set to 3, each trace contains three symbols, and
because Samples per trace is set to 8, each symbol contains eight samples.

1-30

Communications Sinks

Note that trace 1 contains 24 points, which is the product of Symbols per
trace and Samples per symbol. However, traces 2 and 3 contain 25 points
each. The last point in trace 2, at the right border of the scope, represents
the same sample as the first point in trace 1, at the left border of the scope.
Similarly, the last point in trace 3 represents the same sample as the first
point in trace 2. These duplicate points indicate where the traces would meet
if they were displayed side by side, as illustrated in the following picture.

You can view a more realistic eye diagram by changing the value of Traces
displayed to 40 and clearing the Markers field.

When the Offset parameter is set to 0, the plotting starts at the center of the
first symbol, so that the open part of the eye diagram is in the middle of the
plot for most points.

1-31

1 Using the Libraries

Scatter Plot of a Modulated Signal
The following model creates a scatter plot of the same signal considered in
“Eye Diagram of a Modulated Signal” on page 1-28.

To build the model, follow the instructions in “Eye Diagram of a Modulated
Signal” on page 1-28 but replace the Discrete-Time Eye Diagram block with
the following block:

• Discrete-Time Scatter Plot Scope, in the Comms Sinks library

- Set Samples per symbol to 2.

- Set Offset to 0. This specifies the number of samples to skip before
plotting the first point.

- Set Points displayed to 40.

- Set New points per display to 10. This specifies the number of new
points that appear each time the diagram is refreshed. The number of
points that remain in the diagram from one refresh to the next is Points
displayed minus New points per display.

When you run the simulation, the Discrete-Time Scatter Plot Scope block
displays the following plot.

1-32

Communications Sinks

The plot displays 30 points. Because the Color fading check box under
Rendering Properties is selected, points are displayed less brightly the
older they are.

Signal Trajectory of a Modulated Signal
The following model creates a signal trajectory plot of the same signal
considered in “Eye Diagram of a Modulated Signal” on page 1-28.

To build the model, follow the instructions in “Eye Diagram of a Modulated
Signal” on page 1-28 but replace the Discrete-Time Eye Diagram block with
the following block:

• Discrete-Time Signal Trajectory Scope, in the Comms Sinks library

1-33

1 Using the Libraries

- Set Samples per symbol to 8.

- Set Symbols displayed to 40. This specifies the number of symbols
displayed in the signal trajectory. The total number of points displayed
is the product of Samples per symbol and Symbols displayed.

- Set New symbols per display to 10. This specifies the number of new
symbols that appear each time the diagram is refreshed. The number
of symbols that remain in the diagram from one refresh to the next is
Symbols displayed minus New symbols per display.

When you run the model, the Discrete-Time Signal Trajectory Scope displays
a trajectory like the one below.

The plot displays 40 symbols. Because the Color fading check box under
Rendering Properties is selected, symbols are displayed less brightly the
older they are.

See “Scatter Plot of a Modulated Signal” on page 1-32 to compare the
preceding signal trajectory to the scatter plot of the same signal. The

1-34

Communications Sinks

Discrete-Time Signal Trajectory Scope block connects the points displayed by
the Discrete-Time Scatter Plot Scope block to display the signal trajectory.

If you increase Symbols displayed to 100, the model produces a signal
trajectory like the one below. The total number of points displayed at any
instant is 800, which is the product of the parameters Samples per symbol
and Symbols displayed.

1-35

1 Using the Libraries

Source Coding

In this section...

“Section Overview” on page 1-36

“Representing Quantization Parameters” on page 1-37

“Quantizing a Signal” on page 1-38

“Companding a Signal” on page 1-42

“Selected Bibliography for Source Coding” on page 1-44

Section Overview
Source coding, also known as quantization or signal formatting, is a way
of processing data to reduce redundancy or prepare it for later processing.
Analog-to-digital conversion and data compression are two categories of
source coding.

Source coding divides into two basic procedures: source encoding and source
decoding. Source encoding converts a source signal into a digital signal
using a quantization method. The symbols in the resulting signal are
nonnegative integers in some finite range. Source decoding recovers the
original information from the source-coded signal.

For background material on the subject of source coding, see the works listed
in “Selected Bibliography for Source Coding” on page 1-44.

This blockset supports scalar quantization, companders, and differential
coding. It does not support vector quantization. You can open the Source
Coding library by double-clicking its icon in the main Communications
Blockset library.

Supporting functionality in Communications Toolbox also allows you to
optimize source-coding parameters for a set of training data. See “Optimizing
Quantization Parameters” in the Communications Toolbox User’s Guide for
more information about such capabilities.

1-36

Source Coding

Representing Quantization Parameters
Scalar quantization is a process that maps all inputs within a specified range
to a common value. It maps inputs in a different range of values to a different
common value. In effect, scalar quantization digitizes an analog signal. Two
parameters determine a quantization: a partition and a codebook. This
section describes how blocks represent these parameters.

Partitions
A quantization partition defines several contiguous, nonoverlapping ranges of
values within the set of real numbers. To specify a partition as a parameter,
list the distinct endpoints of the different ranges in a vector.

For example, if the partition separates the real number line into the sets

{ : }
{ : }
{ : }
{ : }

x x
x x
x x
x x

≤
< ≤
< ≤
<

0
0 1
1 3
3

then you can represent the partition as the three-element vector

[0,1,3]

The length of the partition vector is one less than the number of partition
intervals.

Codebooks
A codebook tells the quantizer which common value to assign to inputs that
fall into each range of the partition. Represent a codebook as a vector whose
length is the same as the number of partition intervals. For example, the
vector

[-1,0.5,2,3]

is one possible codebook for the partition [0,1,3].

1-37

1 Using the Libraries

Quantizing a Signal
This section shows how the Quantizing Encoder and Quantizing Decoder
blocks use the partition and codebook parameters. The examples here are
analogous to “Scalar Quantization Example 1” and “Scalar Quantization
Example 2” in the Communications Toolbox documentation.

Scalar Quantization Example 1
The figure below shows how the Quantizing Encoder block uses the partition
and codebook as defined above to map a real vector to a new vector whose
entries are either -1, 0.5, 2, or 3. In the Scope window, the bottom signal is the
quantization of the (original) top signal.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

1-38

Source Coding

• Signal From Workspace, in the Signal Processing Sources library

- Set Signal to [-2.4,-1,-.2,0,.2,1,1.2,1.9,2,2.9,3,3.5]'.

• Quantizing Encoder

- Set Quantization partition to [0, 1, 3].

- Set Quantization codebook to [-1, 0.5, 2, 3].

• Terminator, in the Simulink Sinks library

• Scope, in the Simulink Sinks library

- After double-clicking the block to open it, click the Parameters icon and
set Number of axes to 2.

Connect the blocks as shown in the figure. From the model window’s
Simulation menu, select Configuration parameters. In the Configuration
Parameters dialog box, set Stop time to 12. Running the model produces a
scope image similar to the one above. (To make the axis ranges and title
exactly match those in the figure, right-click each plot area in the scope and
select Axes properties.)

Scalar Quantization Example 2
This example, shown in the figure below, illustrates the nature of scalar
quantization more clearly. It samples and quantizes a sine wave and then
plots the original (top) and quantized (bottom) signals. The plot contrasts
the smooth sine curve with the polygonal curve of the quantized signal. The
vertical coordinate of each flat part of the polygonal curve is a value in the
Quantization codebook vector.

1-39

1 Using the Libraries

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Sine Wave, in the Simulink Sources library (not the Sine Wave block in the
Signal Processing Sources library)

• Zero-Order Hold, in the Simulink Discrete library

- Set Sample time to 0.1.

• Quantizing Encoder

- Set Quantization partition to [-1:.2:1].

- Set Quantization codebook to [-1.1:.2:1.1].

• Terminator, in the Simulink Sinks library

• Scope, in the Simulink Sinks library

- After double-clicking the block to open it, click the Parameters icon and
set Number of axes to 2.

Connect the blocks as shown in the figure. From the model window’s
Simulation menu, select Configuration parameters. In the Configuration
Parameters dialog box, set Stop time to 2*pi. Running the model produces
the scope image as shown above. (To make the axis ranges and title exactly

1-40

Source Coding

match those in the figure, right-click each plot area in the scope and select
Axes properties.)

Determining Which Interval Each Input Is In
The Quantizing Encoder block also returns a signal, at the first output port,
that tells which interval each input is in. For example, the model below shows
that the input entries lie within the intervals labeled 0, 6, and 5, respectively.
Here, the 0th interval consists of real numbers less than or equal to 3; the
6th interval consists of real numbers greater than 8 but less than or equal
to 9; and the 5th interval consists of real numbers greater than 7 but less
than or equal to 8.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Constant, in the Simulink Sources library

- Set Constant value to [2, 9, 8].

• Quantizing Encoder

- Set Quantization partition to [3, 4, 5, 6, 7, 8, 9].

- Set Quantization codebook to any vector whose length exceeds the
length of Quantization Partition by one.

• Terminator, in the Simulink Sinks library

• Display, in the Simulink Sinks library

- Drag the bottom edge of the icon to make the display big enough for
three entries.

Connect the blocks as shown above. From the model window’s Simulation
menu, select Configuration parameters. In the Configuration Parameters

1-41

1 Using the Libraries

dialog box, set Stop time to 10. Running the model produces the display
numbers as shown in the figure.

You can continue this example by branching the first output of the Quantizing
Encoder block, connecting one branch to the input port of the Quantizing
Decoder block, and connecting the output of the Quantizing Decoder block
to another Display block. If the two source coding blocks’ Quantization
codebook parameters match, the output of the Quantizing Decoder block
is the same as the second output of the Quantizing Encoder block. Thus
the Quantizing Decoder block partially duplicates the functionality of the
Quantizing Encoder block, but requires different input data and fewer
parameters.

Companding a Signal
In certain applications, such as speech processing, it is common to use a
logarithm computation, called a compressor, before quantizing. The inverse
operation of a compressor is called an expander. The combination of a
compressor and expander is called a compander.

This blockset supports two kinds of companders: µ-law and A-law companders.
The reference pages for the A-Law Compressor, A-Law Expander, Mu-Law
Compressor, and Mu-Law Expander blocks list the relevant expander and
compressor laws.

Example: Using a µ-Law Compander
This example quantizes an exponential signal in two ways and compares
the resulting mean-square distortions. To create the signal in the MATLAB
workspace, execute these commands:

sig = -4:.1:4;
sig = exp(sig'); % Exponential signal to quantize

The model in the following figure performs two computations. One
computation uses the Quantizing Encoder block with a partition consisting of
length-one intervals. The second computation uses the Mu-Law Compressor
block to implement a µ-law compressor, the Quantizing Encoder block to
quantize the compressed data and, finally, the Mu-Law Expander block to
expand the quantized data.

1-42

Source Coding

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Signal From Workspace, in the Signal Processing Sources library

- Set Signal to sig.

• Mu-Law Compressor

- Set Peak signal magnitude to max(sig).

• Mux, in the Simulink Signal Routing library

• Quantizing Encoder, in the Source Coding library

- Set Quantization partition to 0:floor(max(sig)).

- Set Quantization codebook to 0:ceil(max(sig)).

• Terminator, in the Simulink Sinks library

• Demux, in the Simulink Signal Routing library

• Mu-Law Expander

- Set Peak signal magnitude to ceil(max(sig)).

• Two copies of To Workspace, in the Simulink Sinks library

- Set Variable name to nocompander and withcompander, respectively,
in the two copies of this block.

- Set Save format to Array in each of the two copies of this block.

1-43

1 Using the Libraries

Connect the blocks as shown above. From the model window’s Simulation
menu, select Configuration parameters. In the Configuration Parameters
dialog box, set Stop time to 80. Run the model and execute these commands:

distor = sum((nocompander-sig).^2)/length(sig);
distor2 = sum((withcompander-sig).^2)/length(sig);
[distor distor2]

ans =

0.5348 0.0397

This output shows that the distortion is smaller for the second scheme. This
is because equal-length intervals are well suited to the logarithm of the data
but not as well suited to the data itself.

Selected Bibliography for Source Coding

[1] Couch, Leon W., II, Digital and Analog Communication Systems, 6th
edition, Upper Saddle River, NJ, Prentice Hall, 2001.

[2] Kondoz, A.M., Digital Speech, Chichester, England, John Wiley & Sons,
1994.

[3] Sklar, Bernard. Digital Communications: Fundamentals and Applications,
Englewood Cliffs, NJ, Prentice Hall, 1988.

1-44

Block Coding

Block Coding

In this section...

“Section Overview” on page 1-45

“Block-Coding Features of the Blockset” on page 1-46

“Communications Toolbox Support Functions” on page 1-46

“Channel-Coding Terminology” on page 1-47

“Data Formats for Block Coding” on page 1-47

“Using Block Encoders and Decoders Within a Model” on page 1-50

“Examples of Block Coding” on page 1-50

“Notes on Specific Block-Coding Techniques” on page 1-54

“Shortening, Puncturing, and Erasures” on page 1-57

“Selected Bibliography for Block Coding” on page 1-61

Section Overview
Error-control coding techniques detect and possibly correct errors that occur
when messages are transmitted in a digital communication system. To
accomplish this, the encoder transmits not only the information symbols
but also extra redundant symbols. The decoder interprets what it receives,
using the redundant symbols to detect and possibly correct whatever errors
occurred during transmission. You might use error-control coding if your
transmission channel is very noisy or if your data is very sensitive to noise.
Depending on the nature of the data or noise, you might choose a specific
type of error-control coding.

Block coding is a special case of error-control coding. Block-coding techniques
map a fixed number of message symbols to a fixed number of code symbols.
A block coder treats each block of data independently and is a memoryless
device.

You can open the Error Detection and Correction library by double-clicking
its icon in the main Communications Blockset library. Then open the Block
sublibrary by double-clicking its icon in the Error Detection and Correction
library.

1-45

1 Using the Libraries

Block-Coding Features of the Blockset
The class of block-coding techniques includes categories shown in the diagram
below.

�����������������

������������

���������

������������� ������������������

Communications Blockset supports general linear block codes. It also includes
blocks that process cyclic, BCH, Hamming, and Reed-Solomon codes (which
are all special kinds of linear block codes). Blocks in the blockset can encode
or decode a message using one of the techniques mentioned above. The
Reed-Solomon and BCH decoders indicate how many errors they detected
while decoding. The Reed-Solomon coding blocks also let you decide whether
to use symbols or bits as your data.

Note The blocks in this blockset are designed for error-control codes that use
an alphabet having 2 or 2m symbols.

Communications Toolbox Support Functions
Functions in Communications Toolbox can support the Communications
Blockset simulation blocks by

• Determining characteristics of a technique, such as error-correction
capability or possible message lengths

• Performing lower-level computations associated with a technique, such as

- Computing a truth table

- Computing a generator or parity-check matrix

1-46

Block Coding

- Converting between generator and parity-check matrices

- Computing a generator polynomial

For more information about error-control coding capabilities of
Communications Toolbox, see “Block Coding” in the Communications Toolbox
User’s Guide.

Channel-Coding Terminology
Throughout this section, the information to be encoded consists of message
symbols and the code that is produced consists of codewords.

Each block of K message symbols is encoded into a codeword that consists of
N message symbols. K is called the message length, N is called the codeword
length, and the code is called an [N,K] code.

Data Formats for Block Coding
Each message or codeword is an ordered grouping of symbols. Each block in
the Block Coding sublibrary processes one word in each time step, as described
in the following section, “Binary Format (All Coding Methods)” on page 1-47.
Reed-Solomon coding blocks also let you choose between binary and integer
data, as described in “Integer Format (Reed-Solomon Only)” on page 1-49.

Binary Format (All Coding Methods)
You can structure messages and codewords as binary vector signals, where
each vector represents a message word or a codeword. At a given time, the
encoder receives an entire message word, encodes it, and outputs the entire
codeword. The message and code signals share the same sample time.

The figure below illustrates this situation. In this example, the encoder
receives a four-bit message and produces a five-bit codeword at time 0. It
repeats this process with a new message at time 1.

1-47

1 Using the Libraries

�

�

�

�������

�

�

�

�

�

� �� �

�

�

�

����

�

�

�

� �

�

�

� �� �

�������

For all coding techniques except Reed-Solomon using binary input, the
message vector must have length K and the corresponding code vector has
length N. For Reed-Solomon codes with binary input, the symbols for the code
are binary sequences of length M, corresponding to elements of the Galois
field GF(2M). In this case, the message vector must have length M*K and the
corresponding code vector has length M*N. The Binary-Input RS Encoder
block and the Binary-Output RS Decoder block use this format for messages
and codewords.

If the input to a block-coding block is a frame-based vector, it must be a
column vector instead of a row vector.

To produce sample-based messages in the binary format, you can configure
the Bernoulli Binary Generator block so that its Probability of a zero
parameter is a vector whose length is that of the signal you want to create. To
produce frame-based messages in the binary format, you can configure the
same block so that its Probability of a zero parameter is a scalar and its
Samples per frame parameter is the length of the signal you want to create.

Using Serial Signals. If you prefer to structure messages and codewords
as scalar signals, where several samples jointly form a message word or
codeword, you can use the Buffer and Unbuffer blocks in Signal Processing
Blockset. Be aware that buffering involves latency and multirate processing.
See the reference page for the Buffer block for more details. If your model
computes error rates, the initial delay in the coding-buffering combination
influences the Receive delay parameter in the Error Rate Calculation
block. If you are unsure about the sample times of signals in your model,
selecting Sample time colors from the Port/signal displays submenu of
the model’s Format menu, or attaching Probe blocks (from the Simulink
Signal Attributes library) to connector lines might help.

1-48

Block Coding

Integer Format (Reed-Solomon Only)
A message word for an [N,K] Reed-Solomon code consists of M*K bits, which
you can interpret as K symbols between 0 and 2M. The symbols are binary
sequences of length M, corresponding to elements of the Galois field GF(2M),
in descending order of powers. The integer format for Reed-Solomon codes lets
you structure messages and codewords as integer signals instead of binary
signals. (The input must be a frame-based column vector.)

Note In this context, Simulink expects the first bit to be the most significant
bit in the symbol. “First” means the smallest index in a vector or the smallest
time for a series of scalars.

The following figure illustrates the equivalence between binary and integer
signals for a Reed-Solomon encoder. The case for the decoder is similar.

!�������"
#�$�%�����

#

&

�

�

�

� �� �

'�������"�����
(���
�

�������"�����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	
���������
���������

!�������"�%
#������������

���������

1-49

1 Using the Libraries

To produce sample-based messages in the integer format, you can configure
the Random Integer Generator block so that M-ary number and Initial
seed parameters are vectors of the desired length and all entries of the M-ary
number vector are 2M. To produce frame-based messages in the integer
format, you can configure the same block so that its M-ary number and
Initial seed parameters are scalars and its Samples per frame parameter
is the length of the signal you want to create.

Using Block Encoders and Decoders Within a Model
Once you have configured the coding blocks, a few tips can help you place
them correctly within your model:

• If a block has multiple outputs, the first one is always the stream of coding
data.

The Reed-Solomon and BCH blocks have an error counter as a second
output.

• Be sure the signal sizes are appropriate for the mask parameters. For
example, if you use the Binary Cyclic Encoder block and set Message
length K to 4, the input signal must be a vector of length 4.

If you are unsure about the size of signals in your model, selecting Signal
dimensions from the Port/signal displays submenu of the model’s
Format menu might help.

Examples of Block Coding
This section presents two example models. The first example processes a
Hamming code using the binary format, and the second example processes a
Reed-Solomon code using the integer format.

Example: Hamming Code in Binary Format
This example shows very simply how to use an encoder and decoder. It
illustrates the appropriate vector lengths of the code and message signals for
the coding blocks. Because the Error Rate Calculation block accepts only
scalars or frame-based column vectors as the transmitted and received signals,
this example uses frame-based column vectors throughout. (It thus avoids
having to change signal attributes using a block such as Convert 1-D to 2-D.)

1-50

Block Coding

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library

- Set Probability of a zero to .5.

- Set Initial seed to any positive integer scalar, preferably the output
of the randseed function.

- Check the Frame-based outputs check box.

- Set Samples per frame to 4.

• Hamming Encoder, with default parameter values

• Hamming Decoder, with default parameter values

• Error Rate Calculation, in the Comm Sinks library, with default parameter
values

Connect the blocks as in the preceding figure. Use the Signal dimensions
feature from the Port/signal displays submenu of the model window’s
Format menu. After updating the diagram if necessary (Update diagram
from the Edit menu), the connector lines show relevant signal attributes.
The connector lines are double lines to indicate frame-based signals, and
the annotations next to the lines show that the signals are column vectors
of appropriate sizes.

Example: Reed-Solomon Code in Integer Format
This example uses a Reed-Solomon code in integer format. It illustrates the
appropriate vector lengths of the code and message signals for the coding
blocks. It also exhibits error correction, using a very simple way of introducing
errors into each codeword.

1-51

1 Using the Libraries

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Comm Sources library

- Set M-ary number to 15.

- Set Initial seed to a positive number, randseed(0) is chosen here.

- Check the Frame-based outputs check box.

- Set Samples per frame to 5.

• Integer-Input RS Encoder

- Set Codeword length N to 15.

- Set Message length K to 5.

• Gain, in the Simulink Math Operations library

- Set Gain to [0; 0; 0; 0; 0; ones(10,1)].

• Integer-Output RS Decoder

- Set Codeword length N to 15.

- Set Message length K to 5.

• Scope, in the Simulink Sinks library. Get two copies of this block.

• Sum, in the Simulink Math Operations library

- Set List of signs to |-+

Connect the blocks as in the preceding figure. From the model window’s
Simulation menu, select Configuration parameters. In the Configuration
Parameters dialog box, set Stop time to 500.

1-52

Block Coding

The vector length numbers appear on the connecting lines only if you select
Signal dimensions from the Port/signal displays submenu of the model’s
Format menu. The encoder accepts a vector of length 5 (which is K in this
case) and produces a vector of length 15 (which is N in this case). The decoder
does the opposite.

Running the model produces the following scope images. Your plot of the
error counts might differ somewhat, depending on your Initial seed value
in the Random Integer Generator block. (To make the axis range exactly
match that of the first scope, right-click the plot area in the scope and select
Axes properties.)

Difference Between Original Message and Recovered Message

Number of Errors Before Correction

1-53

1 Using the Libraries

The second plot is the number of errors that the decoder detected while trying
to recover the message. Often the number is five because the Gain block
replaces the first five symbols in each codeword with zeros. However, the
number of errors is less than five whenever a correct codeword contains one
or more zeros in the first five places.

The first plot is the difference between the original message and the recovered
message; since the decoder was able to correct all errors that occurred, each of
the five data streams in the plot is zero.

Notes on Specific Block-Coding Techniques
Although the Block Coding sublibrary is somewhat uniform in its look and
feel, the various coding techniques are not identical. This section describes
special options and restrictions that apply to parameters and signals for the
coding technique categories in this sublibrary. Read the part that applies to
the coding technique you want to use: generic linear block code, cyclic code,
Hamming code, BCH code, or Reed-Solomon code.

Generic Linear Block Codes
Encoding a message using a generic linear block code requires a generator
matrix. Decoding the code requires the generator matrix and possibly a truth
table. In order to use the Binary Linear Encoder and Binary Linear Decoder
blocks, you must understand the Generator matrix and Error-correction
truth table parameters.

Generator Matrix. The process of encoding a message into an [N,K] linear
block code is determined by a K-by-N generator matrix G. Specifically, a
1-by-K message vector v is encoded into the 1-by-N codeword vector vG. If G
has the form [Ik, P] or [P, Ik], where P is some K-by-(N-K) matrix and Ik is the
K-by-K identity matrix, G is said to be in standard form. (Some authors,
such as Clark and Cain [1], use the first standard form, while others, such as
Lin and Costello [2], use the second.) The linear block-coding blocks in this
blockset require the Generator matrix mask parameter to be in standard
form.

1-54

Block Coding

Decoding Table. A decoding table tells a decoder how to correct errors that
might have corrupted the code during transmission. Hamming codes can
correct any single-symbol error in any codeword. Other codes can correct,
or partially correct, errors that corrupt more than one symbol in a given
codeword.

The Binary Linear Decoder block allows you to specify a decoding table in the
Error-correction truth table parameter. Represent a decoding table as a
matrix with N columns and 2N-K rows. Each row gives a correction vector for
one received codeword vector.

If you do not want to specify a decoding table explicitly, set that parameter
to 0. This causes the block to compute a decoding table using the syndtable
function in Communications Toolbox.

Cyclic Codes
For cyclic codes, the codeword length N must have the form 2M-1, where M is
an integer greater than or equal to 3.

Generator Polynomials. Cyclic codes have special algebraic properties that
allow a polynomial to determine the coding process completely. This so-called
generator polynomial is a degree-(N-K) divisor of the polynomial xN-1. Van
Lint [4] explains how a generator polynomial determines a cyclic code.

The Binary Cyclic Encoder and Binary Cyclic Decoder blocks allow you to
specify a generator polynomial as the second mask parameter, instead of
specifying K there. The blocks represent a generator polynomial using a
vector that lists the polynomial’s coefficients in order of ascending powers of
the variable. You can find generator polynomials for cyclic codes using the
cyclpoly function in Communications Toolbox.

If you do not want to specify a generator polynomial, set the second mask
parameter to the value of K.

Hamming Codes
For Hamming codes, the codeword length N must have the form 2M-1, where
M is an integer greater than or equal to 3. The message length K must equal
N-M.

1-55

1 Using the Libraries

Primitive Polynomials. Hamming codes rely on algebraic fields that have
2M elements (or, more generally, pM elements for a prime number p). Elements
of such fields are named relative to a distinguished element of the field that is
called a primitive element. The minimal polynomial of a primitive element is
called a primitive polynomial. The Hamming Encoder and Hamming Decoder
blocks allow you to specify a primitive polynomial for the finite field that they
use for computations. If you want to specify this polynomial, do so in the
second mask parameter field. The blocks represent a primitive polynomial
using a vector that lists the polynomial’s coefficients in order of ascending
powers of the variable. You can find generator polynomials for Galois fields
using the gfprimfd function in Communications Toolbox.

If you do not want to specify a primitive polynomial, set the second mask
parameter to the value of K.

BCH Codes
For BCH codes, the codeword length N must have the form 2M-1, where M is
an integer between 3 and 9. The message length K is restricted to particular
values that depend on N. To see which values of K are valid for a given N,
see the reference page for the bchenc function in Communications Toolbox.
No known analytic formula describes the relationship among the codeword
length, message length, and error-correction capability for BCH codes.

Error Information. The BCH Decoder block can also return error-related
information during the simulation. The optional second output signal
indicates the number of errors that the block detected in the input codeword.
A negative integer in the second output indicates that the block detected more
errors than it could correct using the coding scheme. If you do not want the
block to create a second output signal, clear Show number of errors in
the block dialog box.

Reed-Solomon Codes
Reed-Solomon codes are useful for correcting errors that occur in bursts.
In the simplest case, the length of codewords in a Reed-Solomon code is of
the form N= 2M-1, where the 2M is the number of symbols for the code. The
error-correction capability of a Reed-Solomon code is floor((N-K)/2), where
K is the length of message words. The difference N-K must be even.

1-56

Block Coding

It is sometimes convenient to use a shortened Reed-Solomon code in which
N is less than 2M-1. In this case, the encoder appends 2M-1-N zero symbols
to each message word and codeword. The error-correction capability of a
shortened Reed-Solomon code is also floor((N-K)/2)). The Communications
Blockset Reed-Solomon blocks can implement shortened Reed-Solomon codes.

Effect of Nonbinary Symbols. One difference between Reed-Solomon codes
and the other codes supported in this blockset is that Reed-Solomon codes
process symbols in GF(2M) instead of GF(2). Each such symbol is specified by
M bits. The nonbinary nature of the Reed-Solomon code symbols causes the
Reed-Solomon blocks to differ from other coding blocks in these ways:

• You can use the integer format, via the Integer-Input RS Encoder and
Integer-Output RS Decoder blocks.

• The binary format expects the vector lengths to be an integer multiple of
M*K (not K) for messages and the same integer M*N (not N) for codewords.

Error Information. The Reed-Solomon decoding blocks (Binary-Output RS
Decoder and Integer-Output RS Decoder) return error-related information
during the simulation. The second output signal indicates the number of
errors that the block detected in the input codeword. A -1 in the second
output indicates that the block detected more errors than it could correct
using the coding scheme.

Shortening, Puncturing, and Erasures
Many standards utilize punctured codes, and digital receivers can easily
output erasures. BCH and RS performance improves significantly in fading
channels where the receiver generates erasures.

A punctured codeword has only parity symbols removed, and a shortened
codeword has only information symbols removed. A codeword with erasures
can have those erasures in either information symbols or parity symbols.

Reed Solomon Examples with Shortening, Puncturing, and
Erasures
In this section, a representative example of Reed Solomon coding with
shortening, puncturing, and erasures is built with increasing complexity of
error correction.

1-57

1 Using the Libraries

Encoder Example with Shortening and Puncturing.. The following
figure shows a representative example of a (7,3) Reed Solomon encoder with
shortening and puncturing.

Data
source

Add
zeros

Encode

Puncture
(1011)

Shorten

2-symbol
shortened
message

I1I2 0I1I2 0I1I2P1P2P3P4

I1I2P1P3P4 I1I2P1P2P3P4

3-symbol
message

RS Encoder with Shortening and Puncturing

(7, 3)

(6, 2)(5, 2)

In this figure, the message source outputs two information symbols,
designated by I1I2. (For a BCH example, the symbols are simply binary bits.)
Because the code is a shortened (7,3) code, a zero must be added ahead of the
information symbols, yielding a three-symbol message of 0I1I2. The modified
message sequence is then RS encoded, and the added information zero is
subsequently removed, which yields a result of I1I2P1P2P3P4. (In this example,
the parity bits are at the end of the codeword.)

The puncturing operation is governed by the puncture vector, which, in
this case, is 1011. Within the puncture vector, a 1 means that the symbol
is kept, and a 0 means that the symbol is thrown away. In this example,
the puncturing operation removes the second parity symbol, yielding a final
vector of I1I2P1P3P4.

Decoder Example with Shortening and Puncturing.. The following
figure shows how the RS encoder operates on a shortened and punctured
codeword.

1-58

Block Coding

Depuncture
(1011)

Add
zeros

Demod

DecodeTruncate

(5, 2)

I1I2P1P3P4 I1I2P1EP3P4

I1I2 DI1I2

(6, 2)

RS Decoder with Shortening and Puncturing

3-symbol
message

0I1I2P1EP3P4

(7, 3)2-symbol
shortened
message

This case corresponds to the encoder operations shown in the figure of the RS
encoder with shortening and puncturing. As shown in the preceding figure,
the encoder receives a (5,2) codeword, because it has been shortened from a
(7,3) codeword by one symbol, and one symbol has also been punctured.

As a first step, the decoder adds an erasure, designated by E, in the second
parity position of the codeword. This corresponds to the puncture vector 1011.
Adding a zero accounts for shortening, in the same way as shown in the
preceding figure. The single erasure does not exceed the erasure-correcting
capability of the code, which can correct four erasures. The decoding operation
results in the three-symbol message DI1I2. The first symbol is truncated, as in
the preceding figure, yielding a final output of I1I2.

Encoder Example with Shortening, Puncturing, and Erasures.. The
following figure shows the decoder operating on the punctured, shortened
codeword, while also correcting erasures generated by the receiver.

1-59

1 Using the Libraries

Depuncture
(1011)

Add
zeros

Erase

DecodeTruncate

I1EP1P3E I1EP1EP3E

0I1EP1EP3EI1I2 DI1I2

(6, 2)

RS Encoder with Shortening, Puncturing, and Erasures

(7, 3)3-symbol
message

2-symbol
shortened
message

I1I2P1P3P4

(5, 2)

01001

In this figure, demodulator receives the I1I2P1P3P4 vector that the encoder
sent. The demodulator declares that two of the five received symbols are
unreliable enough to be erased, such that symbols 2 and 5 are deemed to be
erasures. The 01001 vector, provided by an external source, indicates these
erasures. Within the erasures vector, a 1 means that the symbol is to be
replaced with an erasure symbol, and a 0 means that the symbol is passed
unaltered.

The decoder blocks receive the codeword and the erasure vector, and perform
the erasures indicated by the vector 01001. Within the erasures vector, a 1
means that the symbol is to be replaced with an erasure symbol, and a 0
means that the symbol is passed unaltered. The resulting codeword vector is
I1EP1P3E, where E is an erasure symbol.

The codeword is then depunctured, according to the puncture vector used
in the encoding operation (i.e., 1011). Thus, an erasure symbol is inserted
between P1 and P3, yielding a codeword vector of I1EP1EP3E.

Just prior to decoding, the addition of zeros at the beginning of the information
vector accounts for the shortening. The resulting vector is 0I1EP1EP3E, such
that a (7,3) codeword is sent to the Berlekamp algorithm.

1-60

Block Coding

This codeword is decoded, yielding a three-symbol message of DI1I2 (where
D refers to a dummy symbol). Finally, the removal of the D symbol from the
message vector accounts for the shortening and yields the original I1I2 vector.

Selected Bibliography for Block Coding

[1] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals
and Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

[3] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-Correcting Codes, 2nd
ed., Cambridge, MA, MIT Press, 1972.

[4] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag,
1982.

1-61

1 Using the Libraries

Convolutional Coding

In this section...

“Section Overview” on page 1-62

“Convolutional-Coding Features of the Blockset” on page 1-62

“Parameters for Convolutional Coding” on page 1-63

“Example: A Rate 2/3 Feedforward Encoder” on page 1-64

“Implementing a Systematic Encoder with Feedback” on page 1-67

“Example: Soft-Decision Decoding” on page 1-68

“Selected Bibliography for Convolutional Coding” on page 1-76

Section Overview
Convolutional coding is a special case of error-control coding. Unlike a block
coder, a convolutional coder is not a memoryless device. Even though a
convolutional coder accepts a fixed number of message symbols and produces
a fixed number of code symbols, its computations depend not only on the
current set of input symbols but on some of the previous input symbols.

Open the Error Detection and Correction library by double-clicking its icon
in the main Communications Blockset library. Open the Convolutional
sublibrary by double-clicking its icon in the Error Detection and Correction
library.

Convolutional-Coding Features of the Blockset
Communications Blockset supports feedforward or feedback binary
convolutional codes that can be described by a trellis structure or a set
of generator polynomials. It uses the Viterbi algorithm to implement
hard-decision and soft-decision decoding.

The blockset also includes an a posteriori probability decoder, which can be
used for soft output decoding of convolutional codes.

1-62

Convolutional Coding

Parameters for Convolutional Coding
To process convolutional codes, use the Convolutional Encoder, Viterbi
Decoder, and/or APP Decoder blocks in the Convolutional sublibrary. If a
mask parameter is required in both the encoder and the decoder, use the
same value in both blocks.

The blocks in the Convolutional sublibrary assume that you use one of two
different representations of a convolutional encoder:

• If you design your encoder using a diagram with shift registers and
modulo-2 adders, you can compute the code generator polynomial matrix
and subsequently use the poly2trellis function (in Communications
Toolbox) to generate the corresponding trellis structure mask parameter
automatically. For an example, see “Example: A Rate 2/3 Feedforward
Encoder” on page 1-64.

• If you design your encoder using a trellis diagram, you can construct the
trellis structure in MATLAB and use it as the mask parameter.

Details about these representations are in the sections “Polynomial
Description of a Convolutional Encoder” and “Trellis Description of a
Convolutional Encoder” in the Communications Toolbox User’s Guide.

Using the Polynomial Description in Blocks
To use the polynomial description with the Convolutional Encoder, Viterbi
Decoder, or APP Decoder blocks, use the utility function poly2trellis from
Communications Toolbox. This function accepts a polynomial description and
converts it into a trellis description. For example, the following command
computes the trellis description of an encoder whose constraint length is 5
and whose generator polynomials are 35 and 31:

trellis = poly2trellis(5,[35 31]);

To use this encoder with one of the convolutional-coding blocks, simply place
a poly2trellis command such as

poly2trellis(5,[35 31]);

in the Trellis structure parameter field.

1-63

1 Using the Libraries

Example: A Rate 2/3 Feedforward Encoder
This example uses the rate 2/3 feedforward convolutional encoder depicted in
the following figure. The description explains how to determine the coding
blocks’ parameters from a schematic of a rate 2/3 feedforward encoder. This
example also illustrates the use of the Error Rate Calculation block with a
receive delay.

)������
��
�

��������
��
�

)��������
�

����������
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

*+�����
��
�

��� ��� ���

��� ��� ���

���

How to Determine Coding Parameters
The Convolutional Encoder and Viterbi Decoder blocks can implement this
code if their parameters have the appropriate values.

The encoder’s constraint length is a vector of length 2 since the encoder has
two inputs. The elements of this vector indicate the number of bits stored in
each shift register, including the current input bits. Counting memory spaces
in each shift register in the diagram and adding one for the current inputs
leads to a constraint length of [5 4].

1-64

Convolutional Coding

To determine the code generator parameter as a 2-by-3 matrix of octal
numbers, use the element in the ith row and jth column to indicate how
the ith input contributes to the jth output. For example, to compute the
element in the second row and third column, notice that the leftmost and two
rightmost elements in the second shift register of the diagram feed into the
sum that forms the third output. Capture this information as the binary
number 1011, which is equivalent to the octal number 13. The full value of
the code generator matrix is [27 33 0; 0 5 13].

To use the constraint length and code generator parameters in the
Convolutional Encoder and Viterbi Decoder blocks, use the poly2trellis
function to convert those parameters into a trellis structure.

How to Simulate the Encoder
The following model simulates this encoder.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library

- Set Probability of a zero to .5.

- Set Initial seed to any positive integer scalar, preferably the output
of the randseed function.

- Set Sample time to .5.

- Check the Frame-based outputs check box.

- Set Samples per frame to 2.

• Convolutional Encoder

1-65

1 Using the Libraries

- Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).

• Binary Symmetric Channel, in the Channels library

- Set Error probability to 0.02.

- Set Initial seed to any positive integer scalar, preferably the output
of the randseed function.

- Clear the Output error vector check box.

• Viterbi Decoder

- Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).

- Set Decision type to Hard Decision.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to 68.

- Set Output data to Port.

- Check the Stop simulation check box.

- Set Target number of errors to 100.

• Display, in the Simulink Sinks library

- Drag the bottom edge of the icon to make the display big enough for
three entries.

Connect the blocks as in the figure. From the model window’s Simulation
menu, select Configuration parameters. In the Configuration Parameters
dialog box, set Stop time to inf.

Notes on the Model
The matrix size annotations appear on the connecting lines only if you
select Signal Dimensions from the Port/signal displays submenu of the
model’s Format menu. The encoder accepts a 2-by-1 frame-based vector and
produces a 3-by-1 frame-based vector, while the decoder does the opposite.
The Samples per frame parameter in the Bernoulli Binary Generator block
is 2 because the block must generate a message word of length 2.

The Receive delay parameter in the Error Rate Calculation block is 68,
which is the vector length (2) of the recovered message times the Traceback

1-66

Convolutional Coding

depth value (34) in the Viterbi Decoder block. If you examine the transmitted
and received signals as matrices in the MATLAB workspace, you see that the
first 34 rows of the recovered message consist of zeros, while subsequent
rows are the decoded messages. Thus the delay in the received signal is 34
vectors of length 2, or 68 samples.

Running the model produces display output consisting of three numbers: the
error rate, the total number of errors, and the total number of comparisons
that the Error Rate Calculation block makes during the simulation. (The first
two numbers vary depending on your Initial seed values in the Bernoulli
Binary Generator and Binary Symmetric Channel blocks.) The simulation
stops after 100 errors occur, because Target number of errors is set to 100
in the Error Rate Calculation block. The error rate is much less than 0.02,
the Error probability in the Binary Symmetric Channel block.

Implementing a Systematic Encoder with Feedback
This section explains how to use the Convolutional Encoder block to
implement a systematic encoder with feedback. A code is systematic if the
actual message words appear as part of the codewords. The following diagram
shows an example of a systematic encoder.

�

�

�

�

�

�

�

�

�

�

��� ��� ��� ���

��������
��
�

)������
��
��,����������-

'��
�

To implement this encoder, set the Trellis structure parameter in the
Convolutional Encoder block to poly2trellis(5, [37 33], 37). This
setting corresponds to

1-67

1 Using the Libraries

• Constraint length: 5

• Generator polynomial pair: [37 33]

• Feedback polynomial: 37

The feedback polynomial is represented by the binary vector [1 1 1 1 1],
corresponding to the upper row of binary digits. These digits indicate
connections from the outputs of the registers to the adder. The initial 1
corresponds to the input bit. The octal representation of the binary number
11111 is 37.

To implement a systematic code, set the first generator polynomial to be the
same as the feedback polynomial in the Trellis structure parameter of the
Convolutional Encoder block. In this example, both polynomials have the
octal representation 37.

The second generator polynomial is represented by the binary vector [1 1
0 1 1], corresponding to the lower row of binary digits. The octal number
corresponding to the binary number 11011 is 33.

For more information on setting the mask parameters for the Convolutional
Encoder block, see “Polynomial Description of a Convolutional Encoder” in the
Communications Toolbox documentation.

Example: Soft-Decision Decoding
This example creates a rate 1/2 convolutional code. It uses a quantizer and
the Viterbi Decoder block to perform soft-decision decoding. This description
covers these topics:

• “Overview of the Simulation” on page 1-69

• “Defining the Convolutional Code” on page 1-69

• “Mapping the Received Data” on page 1-71

• “Decoding the Convolutional Code” on page 1-71

• “Delay in Received Data” on page 1-72

• “Comparing Simulation Results with Theoretical Results” on page 1-73

1-68

Convolutional Coding

Overview of the Simulation
The model is in the following figure. To open the model, click here in the
MATLAB Help browser. The simulation creates a random binary message
signal, encodes the message into a convolutional code, modulates the code
using the binary phase shift keying (BPSK) technique, and adds white
Gaussian noise to the modulated data in order to simulate a noisy channel.
Then, the simulation prepares the received data for the decoding block and
decodes. Finally, the simulation compares the decoded information with the
original message signal in order to compute the bit error rate. The simulation
ends after processing 100 bit errors or 107 message bits, whichever comes first.

Defining the Convolutional Code
The feedforward convolutional encoder in this example is depicted below.

1-69

1 Using the Libraries

'��
�

)������
��
�

�

�

�

�

�

�

� �

�

�

�

�

��

��������
��
�

��� ��� ��� ��� ��� ���

The encoder’s constraint length is a scalar since the encoder has one input.
The value of the constraint length is the number of bits stored in the shift
register, including the current input. There are six memory registers, and the
current input is one bit. Thus the constraint length of the code is 7.

The code generator is a 1-by-2 matrix of octal numbers because the encoder
has one input and two outputs. The first element in the matrix indicates
which input values contribute to the first output, and the second element in
the matrix indicates which input values contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of
the rightmost and the four leftmost elements in the diagram’s array of input
values. The seven-digit binary number 1111001 captures this information,
and is equivalent to the octal number 171. The octal number 171 thus
becomes the first entry of the code generator matrix. Here, each triplet of
bits uses the leftmost bit as the most significant bit. The second output
corresponds to the binary number 1011011, which is equivalent to the octal
number 133. The code generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the
block which code to use when processing data. In this case, the poly2trellis
function, in Communications Toolbox, converts the constraint length and the
pair of octal numbers into a valid trellis structure.

While the message data entering the Convolutional Encoder block is a scalar
bit stream, the encoded data leaving the block is a stream of binary vectors
of length 2.

1-70

Convolutional Coding

Mapping the Received Data
The received data, that is, the output of the AWGN Channel block, consists of
complex numbers that are close to -1 and 1. In order to reconstruct the original
binary message, the receiver part of the model must decode the convolutional
code. The Viterbi Decoder block in this model expects its input data to be
integers between 0 and 7. The demodulator, a custom subsystem in this
model, transforms the received data into a format that the Viterbi Decoder
block can interpret properly. More specifically, the demodulator subsystem

• Converts the received data signal to a real signal by removing its imaginary
part. It is reasonable to assume that the imaginary part of the received
data does not contain essential information, because the imaginary part of
the transmitted data is zero (ignoring small roundoff errors) and because
the channel noise is not very powerful.

• Normalizes the received data by dividing by its running standard deviation
and then multiplying by -1.

• Quantizes the normalized data using three bits.

The combination of this mapping and the Viterbi Decoder block’s decision
mapping reverses the BPSK modulation that the BPSK Modulator Baseband
block performs on the transmitting side of this model. To examine the
demodulator subsystem in more detail, double-click the icon labeled
Soft-Output BPSK Demodulator.

Decoding the Convolutional Code
After the received data is properly mapped to length-2 vectors of 3-bit
decision values, the Viterbi Decoder block decodes it. The block uses a
soft-decision algorithm with 23 different input values because the Decision
type parameter is Soft Decision and the Number of soft decision bits
parameter is 3.

1-71

1 Using the Libraries

Soft-Decision Interpretation of Data. When the Decision type parameter
is set to Soft Decision, the Viterbi Decoder block requires input values
between 0 and 2b-1, where b is the Number of soft decision bits parameter.
The block interprets 0 as the most confident decision that the codeword bit
is a 0 and interprets 2b-1 as the most confident decision that the codeword
bit is a 1. The values in between these extremes represent less confident
decisions. The following table lists the interpretations of the eight possible
input values for this example.

Decision Value Interpretation

0 Most confident 0

1 Second most confident 0

2 Third most confident 0

3 Least confident 0

4 Least confident 1

5 Third most confident 1

6 Second most confident 1

7 Most confident 1

Traceback and Decoding Delay. The Traceback depth parameter
in the Viterbi Decoder block represents the length of the decoding delay.
Typical values for a traceback depth are about five or six times the constraint
length, which would be 35 or 42 in this example. However, some hardware
implementations offer options of 48 and 96. This example chooses 48 because
that is closer to the targets (35 and 42) than 96 is.

Delay in Received Data
The Error Rate Calculation block’s Receive delay parameter is nonzero
because a given message bit and its corresponding recovered bit are separated
in time by a nonzero amount of simulation time. The Receive delay
parameter tells the block which elements of its input signals to compare when
checking for errors.

In this case, the Receive delay value is 49 samples, which is one more than
the Traceback depth value (48) in the Viterbi Decoder block. The extra

1-72

Convolutional Coding

one-sample delay comes from the initial delay in the Buffer block. Because the
Buffer block must collect two scalar samples before it can output one vector,
its first meaningful output occurs at time 1 second, not time 0.

Comparing Simulation Results with Theoretical Results
This section describes how to compare the bit error rate in this simulation
with the bit error rate that would theoretically result from unquantized
decoding. The process includes a few steps, described in these sections:

• “Computing Theoretical Bounds for the Bit Error Rate” on page 1-73

• “Simulating Multiple Times to Collect Bit Error Rates” on page 1-74

Computing Theoretical Bounds for the Bit Error Rate. To calculate
theoretical bounds for the bit error rate Pb of the convolutional code in this
model, you can use this estimate based on unquantized-decision decoding:

P c Pb d d
d f

<
=

∞

∑

In this estimate, cd is the sum of bit errors for error events of distance d,
and f is the free distance of the code. The quantity Pd is the pairwise error
probability, given by

P dR
E
Nd

b=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
2 0

erfc

where R is the code rate of 1/2, and erfc is the MATLAB complementary
error function, defined by

erfc()x e dtt

x

= −
∞

∫
2 2

π

Values for the coefficients cd and the free distance f are in published articles
such as [4]. The free distance for this code is f = 10.

1-73

1 Using the Libraries

The following commands calculate the values of Pb for Eb/N0 values in the
range from 1 to 3.5, in increments of 0.5:

EbNoVec = [1:0.5:4.0];
R = 1/2;
% Errs is the vector of sums of bit errors for
% error events at distance d, for d from 10 to 29.
Errs = [36 0 211 0 1404 0 11633 0 77433 0 502690 0,...

3322763 0 21292910 0 134365911 0 843425871 0];
% P is the matrix of pairwise error probilities, for
% Eb/No values in EbNoVec and d from 10 to 29.
P = zeros(20,7); % Initialize.
for d = 10:29

P(d-9,:) = (1/2)*erfc(sqrt(d*R*10.^(EbNoVec/10)));
end
% Bounds is the vector of upper bounds for the bit error
% rate, for Eb/No values in EbNoVec.
Bounds = Errs*P;

Simulating Multiple Times to Collect Bit Error Rates. You can efficiently
vary the simulation parameters by using the sim function to run the
simulation from the MATLAB command line. For example, the following
code calculates the bit error rate at bit energy-to-noise ratios ranging from 1
dB to 4 dB, in increments of 0.5 dB. It collects all bit error rates from these
simulations in the matrix BERVec. It also plots the bit error rates in a figure
window along with the theoretical bounds computed in the preceding code
fragment.

Note First open the model by clicking here in the MATLAB Help browser.
Then execute these commands, which might take a few minutes.

% Plot theoretical bounds and set up figure.
figure;
semilogy(EbNoVec,Bounds,'bo',1,NaN,'r*');
xlabel('Eb/No (dB)'); ylabel('Bit Error Rate');
title('Bit Error Rate (BER)');
legend('Theoretical bound on BER','Actual BER');
axis([1 4 1e-5 1]);

1-74

Convolutional Coding

hold on;

BERVec = [];
opts = simset('SrcWorkspace','Current',...

'DstWorkspace','Current');
% Make the noise level variable.
set_param('doc_softdecision/AWGN Channel',...

'EsNodB','EbNodB+10*log10(1/2)');
% Simulate multiple times.
for n = 1:length(EbNoVec)

EbNodB = EbNoVec(n);
sim('doc_softdecision',5000000,opts);
BERVec(n,:) = BER_Data;
semilogy(EbNoVec(n),BERVec(n,1),'r*'); % Plot point.
drawnow;

end
hold off;

Note The estimate for Pb assumes that the decoder uses unquantized data,
that is, an infinitely fine quantization. By contrast, the simulation in this
example uses 8-level (3-bit) quantization. Because of this quantization,
the simulated bit error rate is not quite as low as the bound when the
signal-to-noise ratio is high.

The plot of bit error rate against signal-to-noise ratio follows. The locations of
your actual BER points might vary because the simulation involves random
numbers.

1-75

1 Using the Libraries

Selected Bibliography for Convolutional Coding

[1] Benedetto, Sergio, and Guido Montorsi, “Performance of Continuous and
Blockwise Decoded Turbo Codes,” IEEE Communications Letters, Vol. 1, May
1997, pp.77–79.

[2] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara, “A Soft-Input
Soft-Output Maximum A Posterior (MAP) Module to Decode Parallel
and Serial Concatenated Codes,” JPL TDA Progress Report, Vol. 42-127,
November 1996.

[3] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[4] Frenger, P., P. Orten, and T. Ottosson, “Convolution Codes with Optimum
Distance Spectrum,” IEEE Communications Letters, Vol. 3, November 1999,
pp. 317–319.

[5] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data
Communications Principles, New York, Plenum, 1992.

1-76

Convolutional Coding

[6] Heller, Jerrold A., and Irwin Mark Jacobs, “Viterbi Decoding for
Satellite and Space Communication,” IEEE Transactions on Communication
Technology, Vol. COM-19, October 1971, pp. 835–848.

[7] Viterbi, Andrew J., “An Intuitive Justification and a Simplified
Implementation of the MAP Decoder for Convolutional Codes,” IEEE Journal
on Selected Areas in Communications, Vol. 16, February 1998, pp. 260–264.

1-77

1 Using the Libraries

Cyclic Redundancy Check Coding

In this section...

“Section Overview” on page 1-78

“CRC-Coding Features of the Blockset” on page 1-78

“CRC Algorithm” on page 1-79

“Selected Bibliography for CRC Coding” on page 1-80

Section Overview
Cyclic redundancy check (CRC) coding is an error-control coding technique
for detecting errors that occur when a message is transmitted. Unlike block
or convolutional codes, CRC codes do not have a built-in error-correction
capability. Instead, when an error is detected in a received message word, the
receiver requests the sender to retransmit the message word.

In CRC coding, the transmitter applies a rule to each message word to create
extra bits, called the checksum, or syndrome, and then appends the checksum
to the message word. After receiving a transmitted word, the receiver applies
the same rule to the received word. If the resulting checksum is nonzero, an
error has occurred, and the transmitter should resend the message word.

Open the Error Detection and Correction library by double-clicking its icon
in the main Communications Blockset library. Open the CRC sublibrary by
double-clicking on its icon in the Error Detection and Correction library.

CRC-Coding Features of the Blockset
The CRC library contains four blocks that implement the CRC algorithm:

• General CRC Generator

• General CRC Syndrome Detector

• CRC-N Generator

• CRC-N Syndrome Detector

1-78

Cyclic Redundancy Check Coding

The General CRC Generator block computes a checksum for each input frame,
appends it to the message word, and transmits the result. The General CRC
Syndrome Detector block receives a transmitted word and calculates its
checksum. The block has two outputs. The first is the message word without
the transmitted checksum. The second output is a binary error flag, which is
0 if the checksum computed for the received word is zero, and 1 otherwise.

The CRC-N Generator block and CRC-N Syndrome Detector block are special
cases of the General CRC Generator block and General CRC Syndrome
Detector block, which use a predefined CRC-N polynomial, where N is the
number of bits in the checksum.

CRC Algorithm
The CRC algorithm accepts a binary data frame, corresponding to a
polynomial M, and appends a checksum of r bits, corresponding to a
polynomial C. The concatenation of the input frame and the checksum
then corresponds to the polynomial T = M*xr + C, since multiplying by xr

corresponds to shifting the input frame r bits to the left. The algorithm
chooses the checksum C so that T is divisible by a predefined polynomial P of
degree r, called the generator polynomial.

The algorithm divides T by P, and sets the checksum equal to the binary
vector corresponding to the remainder. That is, if T = Q*P + R, where R
is a polynomial of degree less than r, the checksum is the binary vector
corresponding to R. If necessary, the algorithm prepends zeros to the
checksum so that it has length r.

The General CRC Generator block and the CRC-N Generator block, which
implement the transmission phase of the CRC algorithm, do the following:

1 Left shift the input data frame by r bits and divide the corresponding
polynomial by P.

2 Set the checksum equal to the binary vector of length r, corresponding to
the remainder from step 1.

3 Append the checksum to the input data frame. The result is the output
frame.

1-79

1 Using the Libraries

The General CRC Syndrome Detector block and the CRC-N Syndrome
Detector block implement the detection phase of the CRC algorithm. Each of
these blocks computes the checksum for its entire input frame, as described
above. The block’s second output port issues a 0 if the checksum computation
yields a zero value, and a 1 otherwise.

The CRC algorithm uses binary vectors to represent binary polynomials, in
descending order of powers. For example, the vector [1 1 0 1] represents
the polynomial x3 + x2 + 1.

Note The implementation described in this section is one of many valid
implementations of the CRC algorithm. Different implementations can yield
different numerical results.

Example
Suppose the input frame is [1 1 0 0 1 1 0]', corresponding to the
polynomial M = x6 +x 5 + x2 + x, and the generator polynomial is P = x3 + x2

+ 1, of degree r = 3. By polynomial division, M*x3 = (x6 + x3 + x)*P + x. The
remainder is R = x, so that the checksum is then [0 1 0]'. An extra 0 is
added on the left to make the checksum have length 3.

Selected Bibliography for CRC Coding

[1] Sklar, Bernard., Digital Communications: Fundamentals and
Applications, Englewood Cliffs, NJ, Prentice Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and
Storage, Upper Saddle River, NJ, Prentice Hall, 1995.

1-80

Interleaving

Interleaving

In this section...

“Section Overview” on page 1-81

“Block Interleavers” on page 1-81

“Convolutional Interleavers” on page 1-85

“Selected Bibliography for Interleaving” on page 1-90

Section Overview
An interleaver permutes symbols according to a mapping. A corresponding
deinterleaver uses the inverse mapping to restore the original sequence of
symbols. Interleaving and deinterleaving can be useful for reducing errors
caused by burst errors in a communication system.

Open the Interleaving library by double-clicking its icon in the main
Communications Blockset library. Then open the interleaving sublibraries by
double-clicking their icons in the Interleaving library.

This blockset provides interleavers in two broad categories:

• Block interleavers. This category includes matrix, random, algebraic, and
helical scan interleavers as special cases.

• Convolutional interleavers. This category includes a helical interleaver as
a special case, as well as a general multiplexed interleaver.

In typical usage of all interleaver/deinterleaver pairs in this blockset, the
parameters of the deinterleaver match those of the interleaver.

Block Interleavers
A block interleaver accepts a set of symbols and rearranges them, without
repeating or omitting any of the symbols in the set. The number of symbols in
each set is fixed for a given interleaver. The interleaver’s operation on a set of
symbols is independent of its operation on all other sets of symbols.

1-81

1 Using the Libraries

Types of Block Interleavers
The set of block interleavers in this library includes a general
interleaver/deinterleaver pair as well as several special cases. Each
special-case block uses the same computational code that its more general
counterpart uses, but provides an interface that is more suitable for the
special case.

The Matrix Interleaver block accomplishes block interleaving by filling a
matrix with the input symbols row by row and then sending the matrix
contents to the output port column by column. For example, if the interleaver
uses a 2-by-3 matrix to do its internal computations, then for an input of
[1 2 3 4 5 6], the block produces an output of [1 4 2 5 3 6].

The Random Interleaver block chooses a permutation table randomly using
the Initial seed parameter that you provide in the block mask. By using the
same Initial seed value in the corresponding Random Deinterleaver block,
you can restore the permuted symbols to their original ordering.

The Algebraic Interleaver block uses a permutation table that is algebraically
derived. It supports Takeshita-Costello interleavers and Welch-Costas
interleavers. These interleavers are described in [4].

Example: Block Interleavers
The following example shows how to use an interleaver to improve the error
rate when the channel produces bursts of errors.

Before running the model, you must create a binary vector that simulates
bursts of errors, as described in “Creating the Vector of Errors” on page 1-84.
The Signal From Workspace block imports this vector from the MATLAB

1-82

Interleaving

workspace into the model, where the Logical Operator block performs an
XOR of the vector with the signal.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Check the box next to Frame-based outputs.

- Set Samples per frame to 4.

• Hamming Encoder, in the Block sublibrary of the Error Detection and
Correction library. Use default parameters

• Buffer, in the Buffers sublibrary of the Signal Management library in
Signal Processing Blockset

- Set Output buffer size (per channel) to 84.

• Random Interleaver, in the Block sublibrary of the Interleaving library in
Communications Blockset

- Set Number of elements to 84.

• Logical Operator, in the Simulink Math Operations library

- Set Operator to XOR.

• Signal From Workspace, in the Signal Processing Sources library

- Set Signal to errors.

- Set Sample time to 4/7.

- Set Samples per frame to 84.

• Random Deinterleaver, in the Block sublibrary of the Interleaving library
in Communications Blockset

- Set Number of elements to 84.

• Buffer, in the Buffers sublibrary of the Signal Management library in
Signal Processing Blockset

- Set Output buffer size (per channel) to 7.

1-83

1 Using the Libraries

• Hamming Decoder, in the Block sublibrary of the Error Detection and
Correction library. Use default parameters.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to (4/7)*84.

- Set Computation delay to 100.

- Set Output data to Port.

• Display, in the Simulink Sinks library. Use default parameters.

Select Configuration parameters from the model’s Simulation menu and
set Stop time to length(errors).

Creating the Vector of Errors. Before running the model, use the following
code to create a binary vector in the MATLAB workspace. The model uses this
vector to simulate bursts of errors. The vector contains blocks of three 1s,
representing bursts of errors, at random intervals. The distance between two
consecutive blocks of 1s is a random integer between 1 and 80.

errors=zeros(1,10^4);
n=1;
while n<10^4-80;
n=n+floor(79*rand(1))+3;
errors(n:n+2)=[1 1 1];
end

To determine the ratio of the number of 1s to the total number of symbols
in the vector errors, enter

sum(errors)/length(errors)

Your answer should be approximately 3/43, or .0698, since after each
sequence of three 1s, the expected distance to the next sequence of 1s is
40. Consequently, you expect to see three 1s in 43 terms of the sequence.
If there were no error correction in the model, the bit error rate would be
approximately .0698.

When you run a simulation with the model, the error rate is approximately
.019, which shows the improvement due to error correction and interleaving.
You can see the effect of interleaving by deleting the Random Interleaver

1-84

Interleaving

and Random Deinterleaver blocks from the model, connecting the lines, and
running another simulation. The bit error rate is higher without interleaving
because the Hamming code can only correct one error in each codeword.

Convolutional Interleavers
A convolutional interleaver consists of a set of shift registers, each with a
fixed delay. In a typical convolutional interleaver, the delays are nonnegative
integer multiples of a fixed integer (although a general multiplexed
interleaver allows arbitrary delay values). Each new symbol from the input
signal feeds into the next shift register and the oldest symbol in that register
becomes part of the output signal. The schematic below depicts the structure
of a convolutional interleaver by showing the set of shift registers and their
delay values D(1), D(2),..., D(N). The kth shift register holds D(k) symbols,
where k = 1, 2,..., N. The blocks in this library have mask parameters that
indicate the delay for each shift register. The delay is measured in samples.

������

	
��
�'��
� ������

�
�
�

������

�
�
�

This section discusses

• The types of convolutional interleavers included in the library

• The delay between the original sequence and the restored sequence

• An example that uses a convolutional interleaver

1-85

1 Using the Libraries

Types of Convolutional Interleavers
The set of convolutional interleavers in this library includes a general
interleaver/deinterleaver pair as well as several special cases. Each
special-case block uses the same computational code that its more general
counterpart uses, but provides an interface that is more suitable for the
special case.

The most general block in this library is the General Multiplexed Interleaver
block, which allows arbitrary delay values for the set of shift registers. To
implement the preceding schematic using this block, use an Interleaver
delay parameter of [D(1); D(2); ...; D(N)].

More specific is the Convolutional Interleaver block, in which the delay value
for the kth shift register is (k-1) times the block’s Register length step
parameter. The number of shift registers in this block is the value of the
Rows of shift registers parameter.

Finally, the Helical Interleaver block supports a special case of convolutional
interleaving that fills an array with symbols in a helical fashion and empties
the array row by row. To configure this interleaver, use the Number of
columns of helical array parameter to set the width of the array, and use
the Group size and Helical array step size parameters to determine
how symbols are placed in the array. See the reference page for the Helical
Interleaver block for more details and an example.

Delays of Convolutional Interleavers
After a sequence of symbols passes through a convolutional interleaver and a
corresponding convolutional deinterleaver, the restored sequence lags behind
the original sequence. The delay, measured in symbols, between the original
and restored sequences is

(Number of shift registers) * (Maximum delay among all shift registers)

for the most general multiplexed interleaver. If your model incurs an
additional delay between the interleaver output and the deinterleaver input,
the restored sequence lags behind the original sequence by the sum of the
additional delay and the amount in the preceding formula.

1-86

Interleaving

Note For proper synchronization, the delay in your model between the
interleaver output and the deinterleaver input must be an integer multiple of
the number of shift registers. You can use the Delay block in Signal Processing
Blockset to adjust delays manually, if necessary.

Convolutional Interleaver block. In the special case implemented by the
Convolutional Interleaver/Convolutional Deinterleaver pair, the number of
shift registers is the Rows of shift registers parameter, while the maximum
delay among all shift registers is

B * (N-1)

where B is the Register length step parameter and N is the Rows of shift
registers parameter.

Helical Interleaver block. In the special case implemented by the Helical
Interleaver/Helical Deinterleaver pair, the delay between the restored
sequence and the original sequence is

CN
s C

N
()−⎡

⎢⎢
⎤
⎥⎥

1

where C is the Number of columns in helical array parameter, N is the
Group size parameter, and s is the Helical array step size parameter.

Example: Convolutional Interleavers
The example below illustrates convolutional interleaving and deinterleaving
using a sequence of consecutive integers. It also illustrates the inherent delay
and the effect of the interleaving blocks’ initial conditions.

1-87

1 Using the Libraries

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Ramp, in the Simulink Sources library. Use default parameters.

• Zero-Order Hold, in the Simulink Discrete library. Use default parameters.

• Convolutional Interleaver

- Set Rows of shift registers to 3.

- Set Initial conditions to [-1 -2 -3]'.

• Convolutional Deinterleaver

- Set Rows of shift registers to 3.

- Set Initial conditions to [-1 -2 -3]'.

• Two copies of To Workspace, in the Simulink Sinks library

- Set Variable name to interleaved and restored, respectively, in the
two copies of this block.

- Set Save format to Array in each of the two copies of this block.

Connect the blocks as shown in the preceding diagram. From the model
window’s Simulation menu, select Configuration parameters. In the
Configuration Parameters dialog box, set Stop time to 20. Run the simulation
and execute the following command:

comparison = [[0:20]', interleaved, restored]

comparison =

0 0 -1

1-88

Interleaving

1 -2 -2
2 -3 -3
3 3 -1
4 -2 -2
5 -3 -3
6 6 -1
7 1 -2
8 -3 -3
9 9 -1

10 4 -2
11 -3 -3
12 12 0
13 7 1
14 2 2
15 15 3
16 10 4
17 5 5
18 18 6
19 13 7
20 8 8

In this output, the first column contains the original symbol sequence. The
second column contains the interleaved sequence, while the third column
contains the restored sequence.

The negative numbers in the interleaved and restored sequences come from
the interleaving blocks’ initial conditions, not from the original data. The first
of the original symbols appears in the restored sequence only after a delay
of 12 symbols. The delay of the interleaver-deinterleaver combination is the
product of the number of shift registers (3) and the maximum delay among
all shift registers (4).

For a similar example that also indicates the contents of the shift registers
at each step of the process, see “Example: Convolutional Interleavers” in the
Communications Toolbox documentation set.

1-89

1 Using the Libraries

Selected Bibliography for Interleaving

[1] Berlekamp, E.R., and P. Tong, “Improved Interleavers for Algebraic Block
Codes,” U. S. Patent 4559625, Dec. 17, 1985.

[2] Clark, George C., Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[3] Forney, G.D., Jr., “Burst-Correcting Codes for the Classic Bursty Channel,”
IEEE Transactions on Communications, Vol. COM-19, October 1971, pp.
772–781.

[4] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer
Academic Publishers, 1999.

[5] Ramsey, J.L, “Realization of Optimum Interleavers,” IEEE Transactions
on Information Theory, IT-16 (3), May 1970, pp. 338–345.

[6] Takeshita, O.Y., and Costello, D.J., Jr., “New Classes of Algebraic
Interleavers for Turbo-Codes,” Proc. 1998 IEEE International Symposium on
Information Theory, Boston, August, 1998, pp. 419.

1-90

Analog Modulation

Analog Modulation

In this section...

“Section Overview” on page 1-91

“Analog Modulation Features of the Blockset” on page 1-91

“Representing Signals for Analog Modulation” on page 1-92

“Sampling Issues in Analog Modulation” on page 1-92

“Filter Design Issues” on page 1-93

Section Overview
In most media for communication, only a fixed range of frequencies is
available for transmission. One way to communicate a message signal whose
frequency spectrum does not fall within that fixed frequency range, or one
that is otherwise unsuitable for the channel, is to alter a transmittable signal
according to the information in your message signal. This alteration is called
modulation, and it is the modulated signal that you transmit. The receiver
then recovers the original signal through a process called demodulation.
This section describes how to modulate and demodulate analog signals with
Communications Blockset.

Open the Modulation library by double-clicking its icon in the main
Communications Blockset library. Then open the Analog Passband sublibrary
by double-clicking its icon in the Modulation library.

Analog Modulation Features of the Blockset
The following figure shows the modulation techniques that Communications
Blockset supports for analog signals. As the figure suggests, some categories
of techniques include named special cases.

1-91

1 Using the Libraries

.���������
������
���+���

.�����
��
���
������
,./-

)��0
����
���
������

,)/-

1+���
���
������
,1/-

���������������
�
����������������

,���-

2�
������������
�
����������������

,2�����-

For a given modulation technique, two ways to simulate modulation
techniques are called baseband and passband. This blockset supports
passband simulation for analog modulation.

The modulation and demodulation blocks also let you control such features as
the initial phase of the modulated signal and post-demodulation filtering.

Representing Signals for Analog Modulation
Analog modulation blocks in this blockset process only sample-based scalar
signals. The input and output of the analog modulator and demodulator are
all real signals.

All analog demodulators in this blockset produce discrete-time, not
continuous-time, output.

Sampling Issues in Analog Modulation
The proper simulation of analog modulation requires that the Nyquist
criterion be satisfied, taking into account the signal bandwidth.

Specifically, the sample rate of the system must be greater than twice the sum
of the carrier frequency and the signal bandwidth.

1-92

Analog Modulation

Filter Design Issues
After demodulating, you might want to filter out the carrier signal. The
particular filter used, such as butter, cheby1, cheby2, and ellip, can be
selected on the mask of the demodulator block. Different filtering methods
have different properties, and you might need to test your application with
several filters before deciding which is most suitable.

Example: Varying the Filter’s Cutoff Frequency
In many situations, a suitable cutoff frequency is half the carrier frequency.
Since the carrier frequency must be higher than the bandwidth of the message
signal, a cutoff frequency chosen in this way properly filters out unwanted
frequency components. If the cutoff frequency is too high, those components
may not be filtered out. If the cutoff frequency is too low, it might narrow
the bandwidth of the message signal.

The following example modulates a sawtooth message signal, demodulates
the resulting signal using a Butterworth filter, and plots the original and
recovered signals. The Butterworth filter is implemented within the SSB AM
Demodulator Passband block.

To build the model, gather and configure these blocks:

• Signal Generator, in the Simulink Sources library

- Set Wave form to Sawtooth.

- Set Amplitude to 4.

- Set Frequency to .3.

• Zero-Order Hold, in the Simulink Discrete library

- Set Sample time to .01.

1-93

1 Using the Libraries

• SSB AM Modulator Passband, in the Analog Passband sublibrary of the
Modulation library

- Set Carrier frequency to 25.

- Set Initial phase to 0.

- Set Sideband to modulate to Upper.

- Set Hilbert transform filter order to 200.

• SSB AM Demodulator Passband, in the Analog Passband sublibrary of
the Modulation library

- Set Carrier frequency to 25.

- Set Initial phase to 0.

- Set Lowpass filter design method to Butterworth.

- Set Filter order to 2.

- Set Cutoff frequency to 30.

• Scope, in the Simulink Sinks library

- After double-clicking the block to open it, click the Parameters icon and
set Number of axes to 2.

Connect the blocks as in the figure. From the model window’s Simulation
menu, select Configuration parameters. In the Configuration Parameters
dialog box, set Stop time to 10. Running the model produces the following
scope image. The image reflects the original and recovered signals, with a
moderate filter cutoff.

1-94

Analog Modulation

There is invariably a delay between a demodulated signal and the original
received signal. Both the filter order and the filter parameters directly affect
the length of this delay.

Other Filter Cutoffs. To see the effect of a lowpass filter with a higher cutoff
frequency, set the Cutoff frequency of the SSB AM Demodulator Passband
block to 49, and run the simulation again. The new result is shown below.
The higher cutoff frequency allows the carrier signal to interfere with the
demodulated signal.

1-95

1 Using the Libraries

To see the effect of a lowpass filter with a lower cutoff frequency, set the
Cutoff frequency of the SSB AM Demodulator Passband block to 4, and run
the simulation again. The new result is shown in the following figure. The
lower cutoff frequency narrows the bandwidth of the demodulated signal.

1-96

Digital Modulation

Digital Modulation

In this section...

“Section Overview” on page 1-97

“Accessing Digital Modulation Blocks” on page 1-97

“Digital Modulation Features of the Blockset” on page 1-98

“Baseband Modulated Signals” on page 1-100

“Representing Signals for Digital Modulation” on page 1-100

“Delays in Digital Modulation” on page 1-102

“Upsampled Signals and Rate Changes” on page 1-105

“Examples of Digital Modulation” on page 1-108

“Setting Noise Variance for Computing LLRs” on page 1-115

“Selected Bibliography for Digital Modulation” on page 1-117

Section Overview
Like analog modulation, digital modulation alters a transmittable signal
according to the information in a message signal. However, in this case, the
message signal is a discrete-time signal that can assume finitely many values.
This section describes how to modulate and demodulate digital signals with
Communications Blockset.

For background material on the subject of digital modulation, see the works
listed in “Selected Bibliography for Digital Modulation” on page 1-117.

Accessing Digital Modulation Blocks
Open the Modulation library by double-clicking the icon in the main
Communications Blockset library. Then open the Digital Baseband sublibrary
by double-clicking its icon in the Modulation library.

The Digital Baseband library has sublibraries of its own. Open each of these
sublibraries by double-clicking the icon listed in the table below.

1-97

1 Using the Libraries

Kind of Modulation Icon in Digital Baseband Library

Amplitude modulation AM

Phase modulation PM

Frequency modulation FM

Continuous phase modulation CPM

Trellis-coded modulation TCM

Digital Modulation Features of the Blockset
The figure below shows the modulation techniques that Communications
Blockset supports for digital data. All the methods at the far right are
implemented in library blocks.

.�����
��
���
������

1
����������
������
�������,1./-

3
�����
���������
������
�������,3./-

1+���
���
������

)��0
����
���
������

/��
������
���+����"��
������������

������
�
�
�+���
���
������

*������������
���
������

1�4

3./

1+�����+�"���������,1�4-

2�""����������+�����+�"���������,21�4-

	""�����+�����+�"���������,	1�4-

5�
�����������
���+�"���������,5/�4-

/����
���+�"���������,/�4-

������
�
���+����"��0
������+�"���������,�1)�4-

)��0
������+�"���������,)�4-

General and Specific Modulation Methods
Some digital modulation sublibraries contain blocks that implement special
cases of a more general technique and are, in fact, special cases of a more
general block. These special-case blocks use the same computational code that
their general counterparts use, but provide an interface that is either simpler
or more suitable for the special case. The following table lists special-case

1-98

Digital Modulation

modulators, their general counterparts, and the conditions under which the
two are equivalent. The situation is analogous for demodulators.

General and Specific Blocks

General
Modulator

Specific Modulator Specific Conditions

General QAM
Modulator
Baseband

Rectangular QAM
Modulator Baseband

Predefined constellation
containing 2K points on a
rectangular lattice

BPSK Modulator
Baseband

M-ary number
parameter is 2.

M-PSK Modulator
Baseband

QPSK Modulator
Baseband

M-ary number
parameter is 4.

DBPSK Modulator
Baseband

M-ary number
parameter is 2.

M-DPSK
Modulator
Baseband DQPSK Modulator

Baseband
M-ary number
parameter is 4.

GMSK Modulator
Baseband

M-ary number
parameter is 2,
Frequency pulse shape
parameter is Gaussian.

MSK Modulator Baseband M-ary number
parameter is 2,
Frequency pulse
shape parameter is
Rectangular, Pulse
length parameter is 1.

CPM Modulator
Baseband

CPFSK Modulator
Baseband

Frequency pulse
shape parameter is
Rectangular, Pulse
length parameter is 1.

1-99

1 Using the Libraries

General and Specific Blocks (Continued)

General
Modulator

Specific Modulator Specific Conditions

Rectangular QAM TCM
Encoder

Predefined signal
constellation containing
2K points on a rectangular
lattice

General TCM
Encoder

M-PSK TCM Encoder Predefined signal
constellation containing
2K points on a circle

Furthermore, the CPFSK Modulator Baseband block is similar to the
M-FSK Modulator Baseband block, when the M-FSK block uses continuous
phase transitions. However, the M-FSK features of this blockset differ
from the CPFSK features in their mask interfaces and in the demodulator
implementations.

Baseband Modulated Signals
For a given modulation technique, two ways to simulate modulation
techniques are called baseband and passband. This blockset supports
baseband simulation for digital modulation. Baseband simulation, also
known as the lowpass equivalent method, requires less computation compared
to passband simulation. This is because modeling a high-frequency carrier
signal is computationally intensive.

For the mathematical expressions that define baseband signals, see the
baseband signal section in the Communications Toolbox documentation.

Representing Signals for Digital Modulation
All digital modulation blocks process only discrete-time signals and use the
baseband representation. The data types of inputs and outputs are depicted
in the following figure.

1-100

Digital Modulation

���� �
�
���
���������

������$ �
�
���
�����������

����

Note If you want to separate the in-phase and quadrature components of
the complex modulated signal, use the Complex to Real-Imag block in the
Simulink Math Operations library.

Binary-Valued and Integer-Valued Signals
Some digital modulation blocks can accept either integers or binary
representations of such integers. The corresponding demodulation blocks can
output either integers or their binary representations. This section describes
how modulation blocks process binary inputs; the case for demodulation
blocks is the reverse.

If a modulator block’s Input type parameter is set to Bit, the block accepts
binary representations of integers between 0 and M-1. It modulates each
group of K bits, called a binary word. Also, the input vector length must
be an integer multiple of K. If the input is frame-based, then it must be
a column vector.

In binary input mode, the Constellation ordering (or Symbol set
ordering, depending on the type of modulation) parameter indicates how
the block maps a group of K input bits to a corresponding integer. If this
parameter is set to Binary, the block maps [u(1) u(2) ... u(K)] to the integer

u i K i

i

K

()2
1

−

=
∑

and subsequently behaves as if this integer were the input value. u(1) is the
most significant bit.

For example, if M = 8, Constellation ordering (or Symbol set ordering)
is set to Binary, and the binary input word is [1 1 0], the block internally

1-101

1 Using the Libraries

converts [1 1 0] to the integer 6. The block produces the same output as in the
case when the input is 6 and the Input type parameter is Integer.

If Constellation ordering (or Symbol set ordering) is set to Gray, the
block uses a Gray-coded arrangement. The explicit mapping is described
in the algorithm section on the reference page for the M-PSK Modulator
Baseband block.

Delays in Digital Modulation
Digital modulation and demodulation blocks sometimes incur delays between
their inputs and outputs, depending on their configuration and on properties
of their signals. The following table lists sources of delay and the situations
in which they occur.

Delays Resulting from Digital Modulation or Demodulation

Modulation or
Demodulation
Type

Situation in Which Delay Occurs Amount of
Delay

All demodulators
in AM, PM, and
FM sublibraries
except OQPSK

Sample-based input One output
period

Sample-based input, D = Traceback
length parameter

D+1 output
periods

All demodulators
in CPM sublibrary

Frame-based input, D = Traceback
length parameter

D output
periods

1-102

Digital Modulation

Delays Resulting from Digital Modulation or Demodulation
(Continued)

Modulation or
Demodulation
Type

Situation in Which Delay Occurs Amount of
Delay

Frame-based input One output
period

Sample-based input Two output
periods

Sample-based input, and the
model uses a fixed-step solver with
Mode parameter set to Auto or
MultiTasking.

Two output
periods

OQPSK
modulator-
demodulator pair

Sample-based input, and the model
uses a variable-step solver or the
Mode parameter is not set to Auto
or MultiTasking.

One output
period

All demodulators
in TCM sublibrary

Operation mode set to Continuous,
Tr = Traceback depth parameter,
and code rate k/n

Tr*k output bits

As a result of delays, data that enters a modulation or demodulation block at
time T appears in the output at time T+delay. In particular, if your simulation
computes error statistics or compares transmitted with received data, it
must take the delay into account when performing such computations or
comparisons.

First Output Sample in DPSK Demodulation
In addition to the delays mentioned above, the DPSK, DQPSK, and DBPSK
demodulators produce output whose first sample is unrelated to the input.
This is related to the differential modulation technique, not the particular
implementation of it.

1-103

1 Using the Libraries

Example: Delays from Demodulation
Demodulation in the model below causes the demodulated signal to lag,
compared to the unmodulated signal. This delay is typical for sample-based
data that the modulator upsamples. When computing error statistics, the
model accounts for the delay by setting the Error Rate Calculation block’s
Receive delay parameter to 1. If the Receive delay parameter had a
different value, then the error rate showing at the top of the Display block
would be close to 1/2.

Note If this model used the OQPSK method instead of DBPSK, the proper
Receive delay parameter would be 2 instead of 1.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 2.

- Set Initial seed to any positive integer scalar, preferably the output
of the randseed function.

• DBPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband
sublibrary of Modulation

- Set Phase rotation to 0.

• AWGN Channel, in the Channels library

- Set Es/No to 4.

• DBPSK Demodulator Baseband, in the PM sublibrary of the Digital
Baseband sublibrary of Modulation

1-104

Digital Modulation

- Set Phase rotation to 0.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to 0.

- Set Computation delay to 0.

- Set Output data to Port.

• Display, in the Simulink Sinks library

- Drag the bottom edge of the icon to make the display big enough for
three entries.

Connect the blocks as shown above. From the model window’s Simulation,
select Configuration parameters. In the Configuration Parameters dialog
box, set Stop time to 100. Then run the model and observe the error rate at
the top of the Display block’s icon. Your error rate will vary depending on your
Initial seed value in the Random Integer Generator block.

Upsampled Signals and Rate Changes
Some digital modulation blocks can output an upsampled version of the
modulated signal, while their corresponding digital demodulation blocks can
accept an upsampled version of the modulated signal as input. Each block’s
Samples per symbol parameter, S, is the upsampling factor in both cases. It
must be a positive integer. Depending on whether the signal is frame-based or
sample-based, the block either changes the signal’s vector size or its sample
time, as the table below indicates. Only the OQPSK blocks deviate from the
information in the table, in that S is replaced by 2S in the scaling factors.

Processing of Upsampled Modulated Data (Except OQPSK Method)

Computation Type Input Frame Status Result

Modulation Frame-based Output vector length
is S times the number
of integers or binary
words in the input
vector. Output sample
time equals the input
sample time.

1-105

1 Using the Libraries

Processing of Upsampled Modulated Data (Except OQPSK Method)
(Continued)

Computation Type Input Frame Status Result

Modulation Sample-based Output vector is a
scalar. Output sample
time is 1/S times the
input sample time.

Demodulation Frame-based Number of integers or
binary words in the
output vector is 1/S
times the number of
samples in the input
vector. Output sample
time equals the input
sample time.

Demodulation Sample-based Output signal contains
one integer or one
binary word. Output
sample time is S times
the input sample time.
Furthermore, if S > 1
and the demodulator
is from the AM, PM,
or FM sublibrary, the
demodulated signal is
delayed by one output
sample period. There
is no delay if S = 1 or if
the demodulator is from
the CPM sublibrary.

Illustrations of Size or Rate Changes
The following schematics illustrate how a modulator (other than OQPSK)
upsamples a triplet of frame-based and sample-based integers. In both cases,
the Samples per symbol parameter is 2.

1-106

Digital Modulation

���������

	
��
�������������� �'��
�������������

	
��
�������+� ���$�,�
������"����
����������-
)��������������
���(������

������
�������
��
�

��������	�
��	������

��

��

�

�

�

�

6

7

7

���������

	
��
�������������� �,'��
�������������-8�

	
��
�������+� ��
������"����
����������

��������������������
������
�������
��
�

��������	�
��	������

���� ���

� �

�6 77

� �� � � �
� �8�

� �� �

The following schematics illustrate how a demodulator (other than OQPSK or
one from the CPM sublibrary) processes three doubly sampled symbols using
both frame-based and sample-based inputs. In both cases, the Samples per
symbol parameter is 2. The sample-based schematic includes an output
delay of one sample period.

1-107

1 Using the Libraries

�����������

	
��
�������������� �'��
�������������

)��������������
���(������

��������	�
��	����
�����

��

��

�

�

�

�

6

7

7

�����������

	
��
�������������� ���$�,'��
�������������-

����������
�������
��
�

)������
��
��������������������������

��������	�
��	����
�����

���� �� �

� �

�6 �77

� �
,�����-

� # � �� �
� �8�

� �� �

Examples of Digital Modulation
This section builds a few simple example models to illustrate the modulation
methods and how Communications Blockset allows you to implement them.
The examples are

• “DQPSK Signal Constellation Points and Transitions” on page 1-109

• “Rectangular QAM Modulation and Scatter Diagram” on page 1-110

• “Phase Tree for Continuous Phase Modulation” on page 1-112

1-108

Digital Modulation

DQPSK Signal Constellation Points and Transitions
The model below plots the output of the DQPSK Modulator Baseband block.
The image shows the possible transitions from each symbol in the DQPSK
signal constellation to the next symbol.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 4.

- Set Initial seed to any positive integer scalar, preferably the output
of the randseed function.

- Set Sample time to .01.

• DQPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband
sublibrary of Modulation

• Complex to Real-Imag, in the Simulink Math Operations library

• XY Graph, in the Simulink Sinks library

Use the blocks’ default parameters unless otherwise instructed. Connect the
blocks as in the figure above. Running the model produces the following plot.
The plot reflects the transitions among the eight DQPSK constellation points.

1-109

1 Using the Libraries

This plot illustrates π/4-DQPSK modulation, because the default Phase
offset parameter in the DQPSK Modulator Baseband block is pi/4. To see
how the phase offset influences the signal constellation, change the Phase
offset parameter in the DQPSK Modulator Baseband block to pi/8 or another
value. Run the model again and observe how the plot changes.

Rectangular QAM Modulation and Scatter Diagram
The model below uses the M-QAM Modulator Baseband block to modulate
random data. After passing the symbols through a noisy channel, the model
produces a scatter diagram of the noisy data. The diagram suggests what the
underlying signal constellation looks like and shows that the noise distorts
the modulated signal from the constellation.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

1-110

Digital Modulation

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 16.

- Set Initial seed to any positive integer scalar, preferably the output
of the randseed function.

- Set Sample time to .1.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital
Baseband sublibrary of Modulation

- Set Normalization method to Peak Power.

• AWGN Channel, in the Channels library

- Set Es/No to 20.

- Set Symbol period to .1.

• Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- Set Points displayed to 160.

- Set New points per display to 80.

- On the Figure Properties panel, set Scope position to
figposition([2.5 55 35 35]);.

- On the same panel, set Figure name to QAM Scatter Plot.

Connect the blocks as in the figure. From the model window’s Simulation
menu, select Configuration parameters. In the Configuration Parameters
dialog box, set Stop time to 250. Running the model produces a scatter
diagram like the following one. Your plot might look somewhat different,
depending on your Initial seed value in the Random Integer Generator block.
Because the modulation technique is 16-QAM, the plot shows 16 clusters of
points. If there were no noise, the plot would show the 16 exact constellation
points instead of clusters around the constellation points.

1-111

1 Using the Libraries

Phase Tree for Continuous Phase Modulation
This example plots a phase tree associated with a continuous phase
modulation scheme. A phase tree is a diagram that superimposes many
curves, each of which plots the phase of a modulated signal over time. The
distinct curves result from different inputs to the modulator.

This example uses the CPM Modulator Baseband block for its numerical
computations. The block is configured so that it uses a raised cosine filter
pulse shape. The example also illustrates how you can use Simulink and
MATLAB together. The example uses MATLAB commands to run a series
of simulations with different input signals, to collect the simulation results,
and to plot the full data set.

Note In contrast to this example’s approach using both MATLAB and
Simulink, the commcpmphasetree demo produces a phase tree using a
Simulink model without additional lines of MATLAB code.

1-112

Digital Modulation

The first step of this example is to build the model. To open the completed
model, click here in the MATLAB Help browser. To build the model, gather
and configure these blocks:

• DSP Constant, in the Signal Processing Sources library

- Set Constant value to s (which will appear in the MATLAB workspace).

- Set Output to Frame-based.

- Set Frame period to 1.

• CPM Modulator Baseband

- Set M-ary number to 2.

- Set Modulation index to 2/3.

- Set Frequency pulse shape to Raised Cosine.

- Set Pulse length to 2.

• To Workspace, in the Simulink Sinks library

- Set Variable name to x.

- Set Save format to Array.

Do not run the model, because the variable s is not yet defined in the
MATLAB workspace. Instead, save the model to a directory on your MATLAB
path, using the filename doc_phasetree.

The second step of this example is to execute these commands in MATLAB:

% Parameters from the CPM Modulator Baseband block
M_ary_number = 2;
modulation_index = 2/3;
pulse_length = 2;

1-113

1 Using the Libraries

samples_per_symbol = 8;
opts = simset('SrcWorkspace','Current',...

'DstWorkspace','Current');

L = 5; % Symbols to display
pmat = [];
for ip_sig = 0:(M_ary_number^L)-1

s = de2bi(ip_sig,L,M_ary_number,'left-msb');
% Apply the mapping of the input symbol to the CPM
% symbol 0 -> -(M-1), 1 -> -(M-2), etc.
s = 2*s'+1-M_ary_number;
sim('doc_phasetree', .9, opts); % Run model to generate x.
% Next column of pmat
pmat(:,ip_sig+1) = unwrap(angle(x(:)));

end;
pmat = pmat/(pi*modulation_index);
t = (0:L*samples_per_symbol-1)'/samples_per_symbol;
plot(t,pmat); figure(gcf); % Plot phase tree.

The resulting plot follows. Each curve represents a different instance of
simulating the CPM Modulator Baseband block with a distinct (constant)
input signal.

1-114

Digital Modulation

Setting Noise Variance for Computing LLRs
Some digital demodulation blocks can compute bitwise log-likelihood ratio
(LLR) and approximate LLR values that can be used by some decoders (such
as the Viterbi Decoder block) to achieve better BER performance. To compute
LLR or approximate LLR, these blocks need, along with other parameters, the
variance of the noise in the input signal.

If you are adding noise to the transmitted signal using the AWGN Channel
block, there are various methods for computing the noise variance at the input
of a demodulator block based on the Mode parameter of the AWGN Channel
block, as shown in the following figure.

1-115

1 Using the Libraries

Eb/No Mode
The example model doc_noisevariance_ebno shows the case where the
AWGN Channel block’s Mode parameter is set to Signal to noise ratio
(Eb/No).

To open the model, change your directory to
<MATLAB>/help/toolbox/commblks/commblks_examples and type
doc_noisevariance_ebno at the MATLAB command line, or click here, if you
are viewing this in the MATLAB help browser.

The BPSK Demodulator Baseband block’s Decision type is set to
Log-likelihood ratio, and the Noise variance source is set to Dialog.
The Dialog setting enables a field, Noise variance, which is then set to
Pi/(10^(EbNo/10)), where Pi is the input signal power, in watts, and EbNo is
the ratio of bit energy to noise power spectral density, in decibels.

The AWGN Channel block requires both Eb/No and Input signal power
parameters to define the noise that it adds to the signal. Variables such as Pi
and EbNo are defined by the example model in the base workspace.

1-116

Digital Modulation

Es/No Mode
The example doc_noisevariance_esno (also found in
<MATLAB>/help/toolbox/commblks/commblks_examples) shows
how to calculate noise variance for the MPSK Demodulator Baseband
block, computing approximate LLR when the AWGN Channel block’s Mode
parameter is set to Signal to noise ratio (Es/No).

The method of computing noise variance remains the same, whether the
computation is using LLR or approximate LLR. The noise variance is given as
Pi/(10^(EsNo/10)), where Pi is the input signal power, in watts, and EsNo is
the ratio of signal energy to noise power spectral density, in decibels.

The AWGN Channel block uses the two parameters, Es/No and Input signal
power, along with others, to compute the noise it adds to the signal.

SNR Mode
doc_noisevariance_snr (found in the same directory) demonstrates the use
of the Signal to noise ratio (SNR) mode of the AWGN Channel block.

In this example, the Rectangular QAM Demodulator Baseband block,
which computes the LLR, is given the noise variance of its input signal as
Pi/(10^(SNR/10)), where Pi is the input signal power, in watts, and SNR is
the ratio of signal power to noise power, in decibels.

The noise variance is computed using the parameters needed by the AWGN
Channel block to define the noise added to the signal.

Selected Bibliography for Digital Modulation

[1] Anderson, J. B., T. Aulin, and C.-E. Sundberg, Digital Phase Modulation,
New York, Plenum Press, 1986.

[2] Biglieri, E., D. Divsalar, P.J. McLane, and M.K. Simon, Introduction to
Trellis-Coded Modulation with Applications, New York, Macmillan, 1991.

[3] Jeruchim, M. C., P. Balaban, and K. S. Shanmugan, Simulation of
Communication Systems, New York, Plenum Press, 1992.

1-117

1 Using the Libraries

[4] Pawula, R.F., “On M-ary DPSK Transmission Over Terrestrial and
Satellite Channels,” IEEE Transactions on Communications, Vol. COM-32,
July 1984, pp. 752–761.

[5] Smith, J. G., “Odd-Bit Quadrature Amplitude-Shift Keying,” IEEE
Transactions on Communications, Vol. COM-23, March 1975, pp. 385–389.

1-118

Communications Filters

Communications Filters

In this section...

“Section Overview” on page 1-119

“Filter Features of the Blockset” on page 1-119

“Group Delay of a Filter” on page 1-120

“Filtering with Raised Cosine Filter Blocks” on page 1-122

“Example: Using Raised Cosine Filters” on page 1-123

“Selected Bibliography for Communications Filters” on page 1-125

Section Overview
The Comm Filters library includes several blocks that you can use for filtering
or pulse shaping (that is, either transmit filtering or receive filtering). These
operations are necessary to control bandwidth, intersymbol interference, and
signal-to-noise ratio.

Filter Features of the Blockset
Filtering tasks supported in Communications Blockset include

• Filtering using a raised cosine filter. Raised cosine filters are very
commonly used for pulse shaping and matched filtering. The schematic
below illustrates two typical uses of raised cosine filters.

���������� ���������
�
����������
��
������
��
����
���
����

�������
����������
��
������
��
������
��
����

���������� ���������
�
������� �������

 �����
��
������
��

�
����

1-119

1 Using the Libraries

• Filtering using a Gaussian filter.

• Shaping a signal using ideal rectangular pulses.

• Implementing an integrate-and-dump operation or a windowed integrator.
An integrate-and-dump operation is often used in a receiver model
when the system’s transmitter uses an ideal rectangular-pulse model.
Integrate-and-dump can also be used in fiber optics and in spread-spectrum
communication systems such as CDMA (code division multiple access)
applications.

Other filtering capabilities are in Signal Processing Blockset, in the Filter
Designs and Multirate Filters libraries.

For more background information about filters and pulse shaping, see the
works listed in “Selected Bibliography for Communications Filters” on page
1-125.

Group Delay of a Filter
The raised cosine and Gaussian filter blocks in this library implement
realizable filters by delaying the peak response. This delay, known as the
filter’s group delay, is the length of time between the filter’s initial response
and its peak response. The filter blocks in this library have a Group delay
parameter that is an integer representing the number of symbol periods.

For example, the square root raised cosine filter whose impulse response
shown in the following figure uses a Group delay parameter of 4 in the
filter block. In the figure, the initial impulse response is small and the peak
impulse response occurs at the fourth symbol.

1-120

Communications Filters

Implications of Delay for Simulations
A filter block’s Group delay parameter value has implications for other
parts of your model. For example, suppose you compare the symbol streams
marked Symbols In and Symbols Out in the schematics in “Filter Features
of the Blockset” on page 1-119 by plotting or computing an error rate. Use
one of these methods to make sure you are comparing symbols that truly
correspond to each other:

• Use the Delay block in Signal Processing Blockset to delay the Symbols
In signal, thus aligning it with the Symbols Out signal. Set the Delay
parameter equal to the filter’s Group delay parameter (or the sum of
both values, if your model uses a pair of square root raised cosine filter
blocks). This usage is illustrated in the following figure for the case of a
pair of square root raised cosine filters.

1-121

1 Using the Libraries

���������� ���������
�

�$

����������
��
������
��
����
���
����

�������
����������
��
������
��
������
��
����

*$
�����

���������
��������
��

• Use the Align Signals block to align the two signals.

• When using the Error Rate Calculation block to compare the two signals,
increase the Receive delay parameter by the Group delay parameter
value (or the sum of both values, if your model uses a pair of square root
raised cosine filter blocks). The Receive delay parameter might include
other delays as well, depending on the contents of your model.

For more information about how to manage delays in a model, see “Computing
Delays” on page 2-2 and “Manipulating Delays” on page 2-14.

Filtering with Raised Cosine Filter Blocks
The Raised Cosine Transmit Filter and Raised Cosine Receive Filter blocks
are designed for raised cosine filtering. Each block can apply a square root
raised cosine filter or a normal raised cosine filter to a signal. You can vary
the rolloff factor and group delay of the filter.

The Raised Cosine Transmit Filter and Raised Cosine Receive Filter blocks
are tailored for use at the transmitter and receiver, respectively. In particular,
the transmit filter outputs an upsampled signal, while the receive filter
expects its input signal to be upsampled already. Also, the receive filter lets
you choose whether to have the block downsample the filtered signal before
sending it to the output port.

Both raised cosine filter blocks incur a propagation delay, described in “Group
Delay of a Filter” on page 1-120.

1-122

Communications Filters

Combining Two Square-Root Raised Cosine Filters
To split the filtering equally between the transmitter’s filter and the receiver’s
filter, use a pair of square root raised cosine filters:

• Use a Raised Cosine Transmit Filter block at the transmitter, setting the
Filter type parameter to Square root.

• Use a Raised Cosine Receive Filter block at the receiver, setting the Filter
type parameter to Square root. In most cases, it is appropriate to set
the Input samples per symbol parameter to match the transmit filter’s
Upsampling factor parameter.

In theory, the cascade of two square root raised cosine filters is equivalent to a
single normal raised cosine filter. However, the limited impulse response of
practical square root raised cosine filters causes a slight difference between
the response of two cascaded square root raised cosine filters and the response
of one raised cosine filter.

Example: Using Raised Cosine Filters
This example illustrates a typical setup in which a transmitter uses a square
root raised cosine filter to perform pulse shaping and the corresponding
receiver uses a square root raised cosine filter as a matched filter. The
example plots an eye diagram from the filtered received signal.

To open the completed model, click here in the MATLAB Help browser. To
build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 16.

- Set Sample time to 1/100.

1-123

1 Using the Libraries

- Select Frame-based outputs.

- Set Samples per frame to 100.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital
Baseband sublibrary of Modulation

- Set Normalization method to Peak Power.

- Set Peak power to 1.

• Raised Cosine Transmit Filter, in the Comm Filters library

- Set Group delay to 4.

• AWGN Channel, in the Channels library

- Set Mode to Signal to noise ratio (SNR).

- Set SNR to 40.

• Raised Cosine Receive Filter, in the Comm Filters library

- Set Group delay to 4.

- Set Rolloff factor to 0.5.

- Set Output mode to None.

• Discrete-Time Eye Diagram Scope, in the Comm Sinks library

- Set Symbols per trace to 2.

- Set Traces displayed to 100.

Connect the blocks as in the figure. Running the simulation produces the
following eye diagram. The eye diagram has two widely opened “eyes” that
indicate appropriate instants at which to sample the filtered signal before
demodulating. This illustrates the absence of intersymbol interference at the
sampling instants of the received waveform.

1-124

Communications Filters

The large signal-to-noise ratio in this example produces a low-noise eye
diagram, while the model still illustrates where the raised cosine filter blocks
typically belong in relation to a channel block. If you decrease the SNR
parameter in the AWGN Channel block, the eyes in the diagram are less open.

Selected Bibliography for Communications Filters

[1] Proakis, John G., Digital Communications, 3rd ed., New York,
McGraw-Hill, 1995.

[2] Rappaport, Theodore S., Wireless Communications: Principles and
Practice, Upper Saddle River, NJ, Prentice Hall, 1996.

[3] Sklar, Bernard, Digital Communications: Fundamentals and Applications,
Englewood Cliffs, NJ, Prentice Hall, 1988.

1-125

1 Using the Libraries

Channels

In this section...

“Section Overview” on page 1-126

“AWGN Channel” on page 1-126

“Fading Channels” on page 1-127

“Binary Symmetric Channel” on page 1-129

“Selected Bibliography for Channels” on page 1-130

Section Overview
Communication channels introduce noise, fading, interference, and other
distortions into the signals that they transmit. Simulating a communication
system involves modeling a channel based on mathematical descriptions of
the channel. Different transmission media have different properties and are
modeled differently. In a simulation, the channel model usually fits directly
between the transmitter and receiver, as shown below.

������
���� ������� ����
���

This blockset provides several channel models for binary, real, and complex
signals. Open the Channels library by double-clicking its icon in the main
Communications Blockset library.

AWGN Channel
An AWGN channel adds white Gaussian noise to the signal that passes
through it. Gaussian noise is discussed on the reference page for the Gaussian
Noise Generator block. The AWGN Channel block can process either
sample-based or frame-based data, and it lets you specify the variance of
the noise in one of four ways:

• Directly as a mask parameter

1-126

Channels

• Directly as an input signal

• Indirectly via a signal-to-noise ratio parameter

• Indirectly via an Es/No parameter

Fading Channels
The Channels library includes Rayleigh and Rician fading blocks that can
simulate real-world phenomena in mobile communications. These phenomena
include multipath scattering effects, as well as Doppler shifts that arise from
relative motion between the transmitter and receiver. This section discusses

• How to use other blocks in the model to compensate for fading

• How to choose and configure a fading channel block

• How to plot Rayleigh channel characteristics using the channel
visualization tool

For more information about fading channels in general, see “Overview of
Fading Channels” in the Communications Toolbox documentation.

Note To model a channel that involves both fading and additive white
Gaussian noise, use a fading channel block connected in series with the
AWGN Channel block, where the fading channel block comes first.

Compensating for Fading
A communication system involving a fading channel usually requires
component(s) that compensate for the fading. Here are some typical
approaches:

• Differential modulation or a one-tap equalizer can help compensate for a
frequency-flat fading channel.

• An equalizer with multiple taps can help compensate for a
frequency-selective fading channel.

1-127

1 Using the Libraries

See “Equalizers” on page 1-164 to learn how to implement equalizers in this
blockset. See the reference page for the M-DPSK Modulator Baseband block
to learn how to implement differential modulation.

For an example that can help you visualize why compensating for a fading
channel is necessary, see the plots in the commeqeml demo.

Choosing and Configuring a Fading Channel Block
The table below indicates the situations in which each fading channel block is
appropriate.

Signal Path Channel Block

Direct line-of-sight path from
transmitter to receiver

Multipath Rician Fading Channel

One or more major reflected paths
from transmitter to receiver

Multipath Rayleigh Fading Channel

In the case of multiple major reflected paths, a single instance of the Multipath
Rayleigh Fading Channel block can model all of them simultaneously. The
number of paths that the block uses is the length of either the Delay vector
or the Gain vector parameter, whichever length is larger. (If both of these
parameters are vectors, they must have the same length; if exactly one of
these parameters is a scalar, the block expands it into a vector whose size
matches that of the other vector parameter.)

Choosing appropriate block parameters for your situation is important. For
more details about the parameters of fading channel blocks, see

• The reference pages for the Multipath Rayleigh Fading Channel block and
the Multipath Rician Fading Channel block

• The “Choosing Realistic Channel Property Values” section under
“Configuring Channel Objects” in the Communications Toolbox
documentation

• The works listed in “Selected Bibliography for Channels” on page 1-130

1-128

Channels

Visualizing a Multipath Rayleigh Fading Channel
A multipath Rayleigh fading channel’s characteristics can be plotted using
the channel visualization tool. There are two ways to do this for a model that
contains a Multipath Rayleigh Fading Channel block.

One method is to double-click the block during a simulation. The second
method is to select the Open channel visualization at start of simulation
check box in the block dialog box. In subsequent simulations, the channel
visualization tool appears. The tool is also used if it was left open from a
previous simulation.

For Communications Blockset, this channel visualization feature is currently
available only for the Multipath Rayleigh Fading Channel block.

For details, see “Using the Channel Visualization Tool” in the Communications
Toolbox User’s Guide.

Examples Using Fading Channels
The following demonstration models provide examples of the use of fading
channels:

• Rayleigh Fading Channel, which illustrates the channel’s effect on a QPSK
modulated signal

• Adaptive Equalization Using Embedded MATLAB™

• IEEE 802.11a WLAN Physical Layer

• cdma2000 Physical Layer

• Defense Communications: US MIL-STD-188-110B

• WCDMA End-to-End Physical Layer

Binary Symmetric Channel
Binary error channels process binary signals by adding noise modulo 2. This
library contains the Binary Symmetric Channel block, which either preserves
or perturbs each vector element independently. It requires a probability that
applies independently to each noise element. An example using the Binary
Symmetric Channel block is in the section “Example: A Rate 2/3 Feedforward
Encoder” on page 1-64.

1-129

1 Using the Libraries

Selected Bibliography for Channels

[1] Fechtel, Stefan A., “A Novel Approach to Modeling and Efficient
Simulation of Frequency-Selective Fading Radio Channels,” IEEE Journal on
Selected Areas in Communications, Vol. 11, April 1993, pp. 422–431.

[2] Jakes, William C., ed., Microwave Mobile Communications, New York,
IEEE Press, 1974.

[3] Lee, William C. Y., Mobile Communications Design Fundamentals, 2nd
ed., New York, John Wiley & Sons, 1993.

[4] Proakis, John G., Digital Communications, 3rd ed., New York,
McGraw-Hill, 1995.

1-130

RF Impairments

RF Impairments

In this section...

“Section Overview” on page 1-131

“Types of RF Impairments that the Blocks Model” on page 1-131

“Scatter Plot Examples” on page 1-132

“Example Using the RF Impairments Library Blocks” on page 1-138

Section Overview
The RF Impairments library contains blocks that model impairments to
a baseband signal caused by the radio frequency (RF) components in the
receiver.

Types of RF Impairments that the Blocks Model
The blocks in the RF Impairments library can simulate the following types of
signal impairments:

• Nonlinearity and I/Q imbalances

• Phase/frequency offsets and phase noise

• Receiver thermal noise and free space path loss

Nonlinearity and I/Q Imbalance
The following two blocks model signal impairments due to nonlinear devices
or imbalances between the in-phase and quadrature components of a
modulated signal:

• The Memoryless Nonlinearity block models the AM-to-AM and AM-to-PM
distortion in nonlinear amplifiers.

• The I/Q Imbalance block models imbalances between the in-phase and
quadrature components of a signal caused by differences in the physical
channels carrying the separate components.

These blocks distort both the phase and amplitude of the signal.

1-131

1 Using the Libraries

Phase/Frequency Offsets and Phase Noise
The RF Impairments library contains two blocks that simulate
phase/frequency offsets and phase noise:

• The Phase/Frequency Offset block applies phase and frequency offsets
to a signal.

• The Phase Noise block applies phase noise to a signal.

The Phase/Frequency Offset block and the Phase Noise block alter only the
phase and frequency of the signal.

Receiver Thermal Noise and Free Space Path Loss
The RF Impairments Library contains two blocks that simulate signal
impairments due to thermal noise and signal attenuation due to the distance
from the transmitter to the receiver:

• The Receiver Thermal Noise block simulates the effects of thermal noise on
a complex baseband signal.

• The Free Space Path Loss block simulates the loss of signal power due to
the distance from the transmitter and signal frequency.

Scatter Plot Examples
This section presents scatter plots that illustrate how the blocks in the
RF Impairments library distort a signal modulated by 16-ary quadrature
amplitude modulation (QAM). The usual 16-ary QAM constellation without
distortion is shown in the following figure.

1-132

RF Impairments

The scatter plots illustrate the effects of the following blocks:

• “Memoryless Nonlinearity Block” on page 1-134

• “I/Q Imbalance Block” on page 1-135

• “Phase/Frequency Offset Block” on page 1-136

• “Phase Noise Block” on page 1-137

As the scatter plots show, the first two blocks distort both the magnitude and
angle of points in the constellation, while the last two alter just the angle.

You can create these scatter plots with models similar to the following, which
produces the scatter plot for the Memoryless Nonlinearity block:

16-ary QAM Model

1-133

1 Using the Libraries

The model uses the Rectangular QAM Modulator Baseband block, from AM
in the Digital Baseband Modulation sublibrary of the Modulation library.
You control the power of the block’s output signal with the Normalization
method parameter.

Memoryless Nonlinearity Block
The Memoryless Nonlinearity block applies a nonlinear distortion to the input
signal. This distortion models the AM-to-AM and AM-to-PM conversions
in nonlinear amplifiers. The block provides several methods, which you
specify by the Method parameter, for modeling the nonlinear characteristics
of amplifiers:

• Cubic polynomial

• Hyperbolic tangent

• Saleh model

• Ghorbani model

• Rapp model

In the model shown in the preceding figure, the Method parameter is set
to Ghorbani model. The following figure shows the scatter plot the model
generates.

1-134

RF Impairments

For another example of a scatter plot produced using this block, see the
reference page for the Memoryless Nonlinearity block.

I/Q Imbalance Block
You can generate the next scatter plot by replacing the Memoryless
Nonlinearity block in the 16-ary QAM Model on page 1-133 with the I/Q
Imbalance block. Set the block’s I/Q amplitude imbalance (dB) parameter
to 10 and the I/Q phase imbalance (deg) parameter to 30.

1-135

1 Using the Libraries

For more examples of scatter plots produced using this block, see the reference
page for the I/Q Imbalance block.

Phase/Frequency Offset Block
You can generate the next scatter plot by replacing the Memoryless
Nonlinearity block in the 16-ary QAM Model on page 1-133 with the
Phase/Frequency Offset block. Set the block’s Frequency offset (Hz)
parameter to 0 and the Phase offset (deg) parameter to 70.

1-136

RF Impairments

The Frequency offset (Hz) parameter adds a constant to the phase of the
signal. The scatter plot corresponds to the standard constellation rotated by
a fixed angle of 70 degrees.

The Frequency offset (Hz) parameter determines the rate of change of the
signal’s phase. In this example, Frequency offset (Hz) is set to 0, so the
scatter plot always falls on the grid shown in the preceding figure. If you set
Frequency offset (Hz) to a positive number, the points on the scatter plot
fall on a rotating grid, corresponding to the standard constellation, which
revolves at a constant rate in the counterclockwise direction. For an example,
see the reference page for the Phase/Frequency Offset block.

Phase Noise Block
You can generate the next scatter plot by replacing the Memoryless
Nonlinearity block in the 16-ary QAM Model on page 1-133 with the Phase
Noise block. Set the Phase noise level (dBc/Hz) parameter to -60 and the
Frequency offset (Hz) parameter to 100.

1-137

1 Using the Libraries

The phase noise adds a random error to the signal’s phase, so that the points in
the scatter plot are spread in a radial pattern around the constellation points.

Example Using the RF Impairments Library Blocks
The model shown in the following figure simulates RF impairments to a signal
modulated by differential quaternary phase shift keying (DQPSK).

1-138

RF Impairments

Overview of the Model
The model does the following:

• Modulates a random signal using DQPSK modulation.

• Applies impairments to the signal using the blocks from the RF
Impairments library.

1-139

1 Using the Libraries

• Forks the signal into two paths, and processes one path with an automatic
gain control (AGC) to compensate for the free space path loss and the I/Q
imbalance.

• Displays the trajectory of the signal with AGC and the trajectory of the
signal without AGC.

• Demodulates both signals and calculates their error rates.

You can see the effect of the automatic gain by comparing the trajectories of
the signals with and without AGC, as shown in the following figure.

Signal With (Left) and Without (Right) AGC

The trajectory of the signal with AGC more closely matches the undistorted
trajectory for DQPSK, shown in the following figure, than does than the signal
without AGC. Consequently, the error rate for the signal with AGC is much
lower than the error rate for the signal without AGC.

1-140

RF Impairments

In this example, the error rate for the demodulated signal without AGC
is primarily caused by free space path loss and I/Q imbalance. The QPSK
modulation minimizes the effects of the other impairments.

1-141

1 Using the Libraries

Synchronization

In this section...

“Section Overview” on page 1-142

“Timing Phase Recovery” on page 1-143

“Supported Algorithms for Timing Phase Recovery” on page 1-143

“Feedforward Method for Timing Phase Recovery” on page 1-144

“Feedback Methods for Timing Phase Recovery” on page 1-144

“Choosing a Method for Timing Phase Recovery” on page 1-146

“Examples of Timing Phase Recovery” on page 1-149

“Squaring Timing Phase Recovery Example” on page 1-150

“Carrier Phase Recovery” on page 1-153

“Supported Algorithms for Carrier Phase Recovery” on page 1-154

“Carrier Phase Recovery Example” on page 1-154

“Components” on page 1-160

“Selected Bibliography for Synchronization” on page 1-163

Section Overview
In order to interpret information correctly, a communication receiver must
be synchronized with the corresponding transmitter. This can be achieved in
both analog and digital domains. A digital receiver must sample the signal
at an appropriate instant within the symbol period, and must estimate the
carrier phase. Alternatively, analog components such as voltage-controlled
oscillators (VCOs) and phase-locked loops (PLLs) can enable a receiver to
adjust its behavior based on the parameters of the incoming signals or the
desired signals.

This blockset implements several algorithms for timing phase recovery and
carrier phase recovery. It also includes some lower-level components that you
can use to build your own PLLs. This section describes the capabilities of the
Synchronization library’s blocks, in these key sections:

1-142

Synchronization

Open the Synchronization library by double-clicking its icon in the
main Communications Blockset library. Then open the sublibraries by
double-clicking their icons in the Synchronization library.

Timing Phase Recovery
The Timing Phase Recovery library contains blocks that implement various
algorithms for determining the best instant within a symbol period to sample
a signal at the receiver. For example, the best instant for a PSK-modulated
signal is at the peak of the pulse shape. Sampling at the best instant improves
the receiver’s performance on a noisy signal. Typically, you would place
a timing phase recovery block after a receive filter that is matched to the
transmitting pulse shape, and before a demodulator.

This section about timing phase recovery covers these topics:

• “Supported Algorithms for Timing Phase Recovery” on page 1-143

• “Feedforward Method for Timing Phase Recovery” on page 1-144

• “Feedback Methods for Timing Phase Recovery” on page 1-144

• “Choosing a Method for Timing Phase Recovery” on page 1-146

• “Examples of Timing Phase Recovery” on page 1-149

Supported Algorithms for Timing Phase Recovery
This library supports the algorithms listed below, which are all digital
recovery methods rather than conventional analog phase-locked loops. For
more information about each algorithm, see the reference works cited on
each block’s reference entry.

Algorithm Block

Squaring method (feedforward) Squaring Timing Recovery

Early-late gate method (feedback) Early-Late Gate Timing Recovery

Gardner’s method (feedback) Gardner Timing Recovery

Fourth-order nonlinearity method
(feedback)

MSK-Type Signal Timing Recovery

Mueller-Muller method (feedback) Mueller-Muller Timing Recovery

1-143

1 Using the Libraries

Feedforward Method for Timing Phase Recovery
A feedforward method for timing phase recovery is structured as in the
following figure.

'��
� 	
��
��
�
��
���������

�
�
��
���
�����

In the figure,

• The input signal is typically the output of a receive filter that is matched to
the transmit pulse shape.

• The timing estimator gives an estimate of the input signal’s sampling
phase.

• The timing corrector is a sampler that outputs the value of the input signal
corresponding to the phase estimate. The timing corrector interpolates
between input signal values if necessary.

Squaring Timing Recovery block
The Squaring Timing Recovery block implements a feedforward method for
timing phase recovery. In this method, the timing estimator uses a complex
Fourier coefficient to determine the spectral component of the squared
input signal at frequency 1/T, where T is the symbol period. For the specific
equation, see the reference page for the Squaring Timing Recovery block.

Feedback Methods for Timing Phase Recovery
The Timing Phase Recovery library implements several feedback methods
for timing phase recovery. A feedback method for timing phase recovery is
structured as in the following figure.

1-144

Synchronization

'��
� 	
��
�

�,�-

������������

1+������������
���������� !����
����

�
�
�������
��������

In the figure,

• The input signal is typically the output of a receive filter that is matched to
the transmit pulse shape.

• The interpolator generates additional samples based on the needs of the
timing error detector. As implemented here, the interpolator uses linear
interpolation between pairs of points.

• The timing error detector generates a timing error signal for each symbol.
The algorithm used for timing error detection depends on the library block.

• The loop filter updates the phase estimate for the current symbol using
the timing error signal and the previous symbol’s phase estimate. The
phase estimate for the (k+1)st symbol is [[TAU]]k+1 = [[TAU]]k+g*e(k),
where g is the step size (also the Error update gain parameter in the
feedback-method blocks in this library) and e(k) is the timing error for
the kth symbol.

• The controller uses the phase estimates to determine the interpolating
instants that the interpolator uses in the next cycle.

Restarting the Phase Estimating Process During the Simulation
When using a feedback method for timing phase recovery in Simulink, you can
restart the phase-estimation process at different points during the simulation.

1-145

1 Using the Libraries

Restarting the process means resetting the data buffer and phase-estimate
buffer to the all-zeros state. The table below lists the supported options.

Value of Reset
Parameter

When Estimation Process Restarts

None At beginning of simulation only. During the
simulation, the block operates continuously,
retaining information from one symbol to the
next.

Every frame Regularly, at the start of each frame of data.
During the simulation, each frame of data is
processed independently. This option is valid
only with frame-based data.

On nonzero input via
port

Whenever the second input (Rst) is nonzero.
When the first input is sample-based, its symbol
period must equal the sample time of Rst.
When the first input is frame-based, its frame
period must equal the sample time of Rst, and
the reset occurs at the start of the frame.

Using the Restarting Options Effectively. If you restart the
phase-estimation process during the simulation, be sure to include enough
symbols between successive resets for the algorithm to converge to a stable
value. Check the phase (Ph) output from the block to see whether its values
stabilize before the reset occurs. To include more symbols between successive
resets, either increase the frame size by buffering frames together (when
using the Every frame option) or change the Rst input so that nonzero values
occur less frequently.

Choosing a Method for Timing Phase Recovery
Depending on your system, one or more recovery methods implemented in
this library might be suitable. If you use a method that is not suitable for
your system, the results might not be accurate. This section discusses the
assumptions and suitability of the various methods, covering these topics:

• “Squaring Timing Recovery Block” on page 1-147

1-146

Synchronization

• “Assumptions Common to All Feedback Method Blocks” on page 1-147

• “Early-Late Gate Timing Recovery Block” on page 1-148

• “Gardner Timing Recovery Block” on page 1-148

• “MSK-Type Signal Timing Recovery Block” on page 1-149

• “Mueller-Muller Timing Recovery Block” on page 1-149

Squaring Timing Recovery Block
The Squaring Timing Recovery block recovers the symbol-timing phase of
the input signal using a squaring method. This frame-based, feedforward,
nondata-aided method is similar to a conventional squaring loop.

This block is suitable for systems that use linear baseband modulation
types such as pulse amplitude modulation (PAM), phase shift keying (PSK)
modulation, and quadrature amplitude modulation (QAM).

The block assumes that the phase offset is constant for all symbols in the
entire input frame. If necessary, you can use the Buffer block to reorganize
your data into frames over which the phase offset can be assumed constant.

Assumptions Common to All Feedback Method Blocks
The feedback method, as implemented in this library, makes some
assumptions about the data it receives:

• The phase varies slowly over time. Although the blocks compute a phase
estimate for each symbol, the estimate should remain approximately
constant for several symbols or else the algorithm does not converge.

• The symbol frequency is constant and known. Small variations in phase
correspond to a frequency offset, but the blocks do not compensate for it.
The blocks estimate and correct only the phase, not the frequency.

Although the blocks that implement feedback methods share a common
structure and the common assumptions above, the blocks use different
algorithms in the timing error detector and incur different delays. See each
block’s reference entry for details.

1-147

1 Using the Libraries

Early-Late Gate Timing Recovery Block
The Early-Late Gate Timing Recovery block implements a nondata-aided
feedback method.

This block is suitable for systems that use a linear modulation type, such as
pulse amplitude modulation (PAM), phase shift keying (PSK) modulation, or
quadrature amplitude modulation (QAM), with Nyquist pulses (for example,
using a raised cosine filter). In the presence of noise, the performance of this
timing recovery method improves as the pulse’s excess bandwidth (rolloff
factor in the case of a raised cosine filter) increases.

The early-late gate method is similar to Gardner’s method, which is
implemented in the Gardner Timing Recovery block. Some differences
between the two methods are as follows:

• In the ideal case (that is, when the phase estimate is zero and the input
signal has symmetric Nyquist pulses), the timing error detector for the
early-late gate method requires samples that span one symbol interval,
rather than two symbol intervals as in Gardner’s method.

• Compared to Gardner’s method, the early-late gate method has higher self
noise and thus does not perform as well as Gardner’s method in systems
with high SNR values.

Gardner Timing Recovery Block
The Gardner Timing Recovery block implements a nondata-aided feedback
method that is independent of carrier phase recovery.

This block is suitable for both baseband systems and modulated carrier
systems. More specifically, this block is suitable for systems that use a linear
modulation type with Nyquist pulses that have an excess bandwidth between
approximately 40% and 100%. Examples of suitable systems are those that
use pulse amplitude modulation (PAM), phase shift keying (PSK) modulation,
or quadrature amplitude modulation (QAM), and that shape the signal using
raised cosine filters whose rolloff factor is between 0.4 and 1. In the presence
of noise, the performance of this timing recovery method improves as the
excess bandwidth (rolloff factor in the case of a raised cosine filter) increases.

1-148

Synchronization

Gardner’s method is similar to the early-late gate method, which is
implemented in the Early-Late Gate Timing Recovery block.

MSK-Type Signal Timing Recovery Block
The MSK-Type Signal Timing Recovery block recovers the symbol timing
phase of the input signal using a fourth-order nonlinearity method. This block
implements a general nondata-aided feedback method that is independent of
carrier phase recovery but that requires prior compensation for the carrier
frequency offset.

This block is suitable for systems that use baseband minimum shift keying
(MSK) modulation or Gaussian minimum shift keying (GMSK) modulation.
Unlike the other blocks in this library, this block does not require the input
signal to have been filtered beforehand.

Mueller-Muller Timing Recovery Block
The Mueller-Muller Timing Recovery block implements a decision-directed,
data-aided feedback method that requires prior recovery of the carrier phase.

This block is suitable for systems that use a binary linear modulation type,
such as binary phase shift keying (BPSK) modulation, or binary phase
amplitude modulation (BPAM). The binary requirement arises because
the algorithm uses a sign detector (that is, a 1-bit quantizer) to arrive at
decisions. When the input signal has Nyquist pulses (for example, using a
raised cosine filter), this timing recovery method has no self noise. In the
presence of noise, the performance of this timing recovery method improves
as the pulse’s excess bandwidth factor decreases, making the method a good
candidate for narrowband signaling.

Examples of Timing Phase Recovery
One way to illustrate the usage and behavior of the timing phase recovery
blocks is to introduce a fractional delay in a communications link and then
see how well the block estimates the delay value and samples the received
signal. In this context, a “fractional delay” is a delay that is not a multiple of
the signal’s symbol period. The examples discussed here are

1-149

1 Using the Libraries

• “Squaring Timing Phase Recovery Example” on page 1-150, described
below. This model introduces a fixed fractional delay and uses a feedforward
method for timing phase recovery.

• Gardner timing phase recovery demo, which you can open by entering
commgardnerphrecov in the MATLAB Command Window. This model
introduces a fractional delay that varies from frame to frame and uses a
feedback method for timing phase recovery.

Squaring Timing Phase Recovery Example
This example modifies the one in “Example: Using Raised Cosine Filters” on
page 1-123 by introducing and then correcting for a fixed fractional delay. The
model uses the Squaring Timing Recovery block to estimate that delay and
determine the best instant within the symbol to sample its input signal. The
model then demodulates the downsampled signal and computes a symbol
error rate.

To open the completed model, click here in the MATLAB Help browser.

1-150

Synchronization

To build the model, first open the raised cosine filter model by clicking here in
the MATLAB Help browser. Then, gather and configure these blocks:

• Variable Fractional Delay, in the Signal Processing Blockset Signal
Operations library. Use default parameters.

• Constant, in the Simulink Sources library

- Set Constant value to 2.66. This is the number of samples of delay
introduced in the system.

• Goto and From, in the Simulink Signal Routing library. Use default
parameters.

• Selector, in the Simulink Signal Routing library

- Set Elements to 1. This causes the block to select the first value in the
frame, all of whose entries are actually the same.

- Set Input port width to 100.

• Squaring Timing Recovery

- Set Samples per symbol to 8.

• Rectangular QAM Demodulator Baseband, in the AM sublibrary of the
Digital Baseband sublibrary of Modulation

- Set Normalization method to Peak Power.

- Set Peak power to 1.

• Error Rate Calculation, in the Comm Sinks library

- Set Receive delay to 8. This accounts for the delay of the pair of square
root raised cosine filters.

- Set Output data to Port.

• Two copies of Display, in the Simulink Sinks library. Make one tall enough
to accommodate three values.

Connect the blocks as in the figure, and then run the simulation.

1-151

1 Using the Libraries

Results of the Simulation
When you run the simulation, look for these results:

• A delay estimate that varies during the simulation but is near the fixed
value of 2.66. The Squaring Timing Recovery block computes this delay
estimate for each frame and then uses it to choose a sampling instant for
the symbols in that frame.

• A symbol error rate that is small or zero, depending on how long you run
the simulation. For most or all symbols, the Squaring Timing Recovery
block determines a sampling instant that enables the demodulator to
recover data correctly.

• An eye diagram that has two widely opened “eyes” near 8.325 ms and
18.325 ms. These wide openings indicate appropriate instants at which to
sample the filtered signal before demodulating, and reflect the introduced
delay of 2.66 samples.

To arrive at the numbers 8.325 and 18.325, reason as follows: The eye
diagram displays two symbols per trace, and each symbol has a period of
10 ms. Without the introduced delay, the centers of the trace’s two symbols
are at 5 ms and 15 ms. The delay value in each symbol is

(2.66 samples) / (8 samples/symbol) * (10 ms/symbol) = 3.325 ms

Therefore, the traces from the delayed signal have their widest openings
at (5+3.325) ms and (15+3.325) ms.

1-152

Synchronization

While this example uses a fixed delay throughout the simulation, the blocks
in the timing recovery library can also correct for delays that vary (slowly)
from symbol to symbol. For an example that uses a varying delay, see the
Gardner timing phase recovery demo.

Carrier Phase Recovery
The Carrier Phase Recovery library contains blocks that implement digital
algorithms for determining the carrier phase of a baseband digital signal. The
blocks assume that the carrier frequency is known and fixed. The blocks
output the estimated carrier phase as well as a corrected (that is, rotated)
version of the input signal. Typically, you place a carrier phase recovery block
before a demodulator, and after a timing phase recovery block or another
block that produces symbols rather than an upsampled signal.

This section about carrier phase recovery covers these topics:

• “Supported Algorithms for Carrier Phase Recovery” on page 1-154

• “Carrier Phase Recovery Example” on page 1-154

1-153

1 Using the Libraries

Supported Algorithms for Carrier Phase Recovery
This library supports the algorithms listed below, which are all digital
recovery methods rather than conventional analog methods. For more
information about each algorithm, see the reference works cited on each
block’s reference entry.

Algorithm Block

2P-power method, suitable for full-response
CPM, MSK, CPFSK, or GMSK signals.

CPM Phase Recovery

M-power method, suitable for M-PSK signals.
(Also, the 4-power method is suitable for QAM
signals using any alphabet size.)

M-PSK Phase Recovery

The methods described in the table are nondata-aided, clock-aided,
feedforward methods. They assume that timing and carrier frequency are
already known and any matched filtering has already been performed.

The methods also assume that the carrier phase to be estimated is constant
over a series of consecutive symbols. When you use the blocks in this library,
you specify the number of symbols over which the carrier phase is assumed
constant.

Carrier Phase Recovery Example
This example modifies the one in “Squaring Timing Phase Recovery Example”
on page 1-150 by introducing and then correcting for a fixed phase offset. The
model uses the M-PSK Phase Recovery block to estimate the offset and correct
the received baseband signal by rotating it. The model then demodulates the
corrected signal and computes a symbol error rate.

To open the completed model, click here in the MATLAB Help browser.

1-154

Synchronization

To build the model, first open the squaring timing phase recovery model by
clicking here in the MATLAB Help browser. Then, gather and configure
these blocks:

• M-PSK Modulator Baseband and M-PSK Demodulator Baseband, in the
PM sublibrary of the Digital Baseband sublibrary of Modulation. In each
block,

- Set M-ary number to 16.

- Set Phase offset to 0.

• Phase/Frequency Offset, in the RF Impairments library

- Set Phase offset to 10.

• M-PSK Phase Recovery

- Set M-ary number to 16.

- Set Observation interval to 500.

• Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- Set Points displayed to 400.

1-155

1 Using the Libraries

• Display, in the Simulink Sinks library

Replace the Rectangular QAM Modulator Baseband and Rectangular QAM
Demodulator Baseband blocks with the corresponding M-PSK blocks listed
above.

Remove the Discrete-Time Eye Diagram Scope block and the branched signal
line leading to it.

In the Error Rate Calculation block, change Computation delay to 500,
because the M-PSK Phase Recovery block has a latency of one observation
interval. This latency is described on the M-PSK Phase Recovery block’s
reference page.

Connect the remaining blocks as in the figure, and then run the simulation.

Results of the Simulation
When you run the simulation, look for these results:

• A carrier phase estimate that varies during the simulation but is near the
fixed value of 10 degrees. The M-PSK Phase Recovery block computes
this carrier phase estimate for each frame and then uses it to correct the
phase of the symbols in that frame.

• A symbol error rate that is small or zero, depending on how long you run
the simulation. For most or all symbols, the M-PSK Phase Recovery block
enables the demodulator to recover data correctly.

1-156

Synchronization

• A signal constellation that reflects the signal whose phase the M-PSK
Phase Recovery block has corrected. When you first begin the simulation
and the block is in an initial latency period, the constellation reflects the
phase offset of 10 degrees, with no correction. After the latency period is
over, the constellation shows no phase offset because the M-PSK Phase
Recovery block has corrected for it. The constellations before and after
the end of the latency period appear below. The easiest way to see the
10-degree rotation between the two constellations is to look at the axes.

Before End of Latency Period

1-157

1 Using the Libraries

After End of Latency Period

Exploring the Simulation Further
Another way to examine the performance of the carrier phase recovery is to
check how much the phase estimates from successive observation intervals
differ from each other. You do this using the plotting capabilities of MATLAB
along with the simulation capabilities of Simulink:

1 Add a Signal to Workspace block, from the Signal Processing Sinks library,
to the carrier phase recovery example model.

2 In the Signal to Workspace block, set Variable name to phs and set Limit
data points to last to 200.

3 Connect the Signal to Workspace block to the Ph output of the M-PSK
Phase Recovery block, as shown in the following figure.

1-158

Synchronization

4 In the MATLAB Command Window, enter this command to run the
simulation for a finite period of time:

sim('doc_carrier',205);

You make the simulation run faster by closing the window containing
the signal constellation plot. When the simulation ends, the MATLAB
workspace contains a variable called phs that contains the last 200 phase
estimates from the M-PSK Phase Recovery block. Initial zeros from the
delay period are omitted.

5 Create a plot showing the phase estimate values as well as their mean
value by entering the following in the MATLAB Command Window:

plot(1:200,phs,'b-',1:200,mean(phs),'r--')
legend('Carrier phase estimate','Mean carrier phase estimate')
xlabel('Observation intervals'); ylabel('Degrees')

1-159

1 Using the Libraries

The plot shows that the mean is very close to the expected value of 10 degrees,
while the individual phase estimates vary within an interval that includes
10 degrees.

Components
The Components sublibrary contains voltage-controlled oscillator (VCO)
models as well as phase-locked loop (PLL) models.

This section discusses these topics:

• “Voltage-Controlled Oscillator Blocks” on page 1-161

• “Overview of PLL Simulation” on page 1-161

• “Implementing an Analog Baseband PLL” on page 1-162

• “Implementing a Digital PLL” on page 1-163

For details about phase-locked loops, see the works listed in “Selected
Bibliography for Synchronization” on page 1-163.

1-160

Synchronization

Voltage-Controlled Oscillator Blocks
A voltage-controlled oscillator is one part of a phase-locked loop. The
Continuous-Time VCO and Discrete-Time VCO blocks implement
voltage-controlled oscillators. These blocks produce continuous-time and
discrete-time output signals, respectively. Each block’s output signal is
sinusoidal, and changes its frequency in response to the amplitude variations
of the input signal.

Overview of PLL Simulation
A phase-locked loop (PLL), when used in conjunction with other components,
helps synchronize the receiver. A PLL is an automatic control system that
adjusts the phase of a local signal to match the phase of the received signal.
The PLL design works best for narrowband signals.

A simple PLL consists of a phase detector, a loop filter, and a voltage-controlled
oscillator (VCO). For example, the following figure shows how these
components are arranged for an analog passband PLL. In this case, the phase
detector is just a multiplier. The signal e(t) is often called the error signal.

�,�-

�,�-

�
����
�,�-

"�#

The following table indicates the supported types of PLLs and the blocks
that implement them.

Supported PLLs in Components Library

Type of PLL Block

Analog passband PLL Phase-Locked Loop

Analog baseband PLL Baseband PLL

1-161

1 Using the Libraries

Supported PLLs in Components Library (Continued)

Type of PLL Block

Linearized analog baseband PLL Linearized Baseband PLL

Digital PLL using a charge pump Charge Pump PLL

Different PLLs use different phase detectors, filters, and VCO characteristics.
Some of these attributes are built into the PLL blocks in this blockset, while
others depend on parameters that you set in the block mask:

• You specify the filter’s transfer function in the block mask using the
Lowpass filter numerator and Lowpass filter denominator
parameters. Each of these parameters is a vector that lists the coefficients
of the respective polynomial in order of descending exponents of the
variable s. To design a filter, you can use functions such as butter, cheby1,
and cheby2 in Signal Processing Toolbox.

• You specify the key VCO characteristics in the block mask. All four PLL
blocks use a VCO input sensitivity parameter. Some blocks also use VCO
quiescent frequency, VCO initial phase, and VCO output amplitude
parameters.

• The phase detector for each of the PLL blocks is a feature that you cannot
change from the block mask.

Implementing an Analog Baseband PLL
Unlike passband models for a phase-locked loop, a baseband model does not
depend on a carrier frequency. This allows you to use a lower sampling rate in
the simulation. Two blocks implement analog baseband PLLs:

• Baseband PLL

• Linearized Baseband PLL

The linearized model and the nonlinearized model differ in that the linearized
model uses the approximation

sin () ()Δ Δθ θt t() ≅

1-162

Synchronization

to simplify the computations. This approximation is close when Δθ(t) is near
zero. Thus, instead of using the input signal and the VCO output signal
directly, the linearized PLL model uses only their phases.

Implementing a Digital PLL
The charge pump PLL is a classical digital PLL. Unlike the analog PLLs
mentioned above, the charge pump PLL uses a sequential logic phase detector,
which is also known as a digital phase detector or a phase/frequency detector.

Selected Bibliography for Synchronization

[1] Gardner, F.M., “Charge-pump Phase-lock Loops,” IEEE Trans. on
Communications, Vol. 28, November 1980, pp. 1849–1858.

[2] Gardner, F.M., “Phase Accuracy of Charge Pump PLLs,” IEEE Trans. on
Communications, Vol. 30, October 1982, pp. 2362–2363.

[3] Gupta, S.C., “Phase Locked Loops,” Proceedings of the IEEE, Vol. 63,
February 1975, pp. 291–306.

[4] Lindsay, W.C. and C.M. Chie, “A Survey on Digital Phase-Locked Loops,”
Proceedings of the IEEE, Vol. 69, April 1981, pp. 410–431.

[5] Mengali, Umberto, and Aldo N. D’Andrea, Synchronization Techniques for
Digital Receivers, New York, Plenum Press, 1997.

[6] Meyr, Heinrich, and Gerd Ascheid, Synchronization in Digital
Communications, Vol. 1, New York, John Wiley & Sons, 1990.

[7] Moeneclaey, Marc, and Geert de Jonghe, “ML-Oriented NDA Carrier
Synchronization for General Rotationally Symmetric Signal Constellations,”
IEEE Transactions on Communications, Vol. 42, No. 8, Aug. 1994, pp.
2531–2533.

1-163

1 Using the Libraries

Equalizers

In this section...

“Section Overview” on page 1-164

“Sources of Background Material” on page 1-164

“Equalization Features of the Blockset” on page 1-165

“Using Adaptive Equalizers” on page 1-165

“Example: LMS Linear Equalizer” on page 1-168

“Using MLSE Equalizers” on page 1-171

Section Overview
Time-dispersive channels can cause intersymbol interference (ISI). For
example, in a multipath scattering environment, the receiver sees delayed
versions of a symbol transmission, which can interfere with other symbol
transmissions. An equalizer attempts to mitigate ISI and thus improve the
receiver’s performance.

This section describes the capabilities of the Equalizers library’s blocks.

Sources of Background Material
To learn more about equalizers in general, see these sections of the
Communications Toolbox documentation about equalizer functions:

• “Overview of Adaptive Equalizer Classes” gives brief background material
on the supported adaptive equalizer types

• “Choosing an Adaptive Algorithm” has a brief description of the different
adaptive algorithms, to help you decide which one might be appropriate
for your application

• “Selected Bibliography for Equalizers” has a list of published works that
contain more detailed background material

1-164

Equalizers

Equalization Features of the Blockset
Open the Equalizers library by double-clicking its icon in the main
Communications Blockset library. This blockset supports these distinct
classes of equalizers, each with a different overall structure:

• Linear equalizers, a class that includes symbol-spaced equalizers and
fractionally spaced equalizers

• Decision-feedback equalizers

• MLSE (maximum-likelihood sequence estimation) equalizer that uses the
Viterbi algorithm

Linear and decision-feedback equalizers are adaptive equalizers that use an
adaptive algorithm when operating. For each of the adaptive equalizer classes
listed above, this blockset supports these adaptive algorithms:

• Least mean square (LMS)

• Normalized LMS

• Signed LMS, including these types: sign LMS, sign regressor LMS, and
sign-sign LMS

• Variable-step-size LMS

• Recursive least squares (RLS)

• Constant Modulus Algorithm (CMA)

Using Adaptive Equalizers
Several blocks from the Equalizers library implement adaptive equalizers,
differing in the equalizer structure and the type of adaptive algorithm that
they use. In all cases, you specify information about the equalizer structure
(such as the number of taps), the adaptive algorithm (such as the step size),
and the signal constellation used by the modulator in your model. You
also specify an initial set of weights for the taps of the equalizer; the block
adaptively updates the weights throughout the simulation. For adaptive
algorithms other than CMA, the equalizer can adapt the weights in two
modes: training mode and decision-directed mode. The following sections
discuss some configuration details for blocks in the library:

• “Specifying the Signal Constellation of the Modulated Signal” on page 1-166

1-165

1 Using the Libraries

• “Equalizing Using a Training Sequence” on page 1-166

• “Equalizing in Decision-Directed Mode” on page 1-167

• “Controlling the Use of Training or Decision-Directed Mode” on page 1-167

• “Retrieving the Weights and Error Signal” on page 1-168

Specifying the Signal Constellation of the Modulated Signal
Each equalizer block has a Signal constellation parameter that specifies
the constellation for the modulated signal, as determined by the modulator
in your model. Signal constellation is a vector of complex numbers, where
the kth complex number in the vector is the constellation point to which the
modulator maps the integer k-1.

Note The sequence of constellation points must be consistent between the
modulator in your model and the Signal constellation parameter in the
equalizer block.

Equalizing Using a Training Sequence
In typical applications, an equalizer begins by using a known sequence of
transmitted symbols when adapting the equalizer weights. The known
sequence, called a training sequence, enables the equalizer to gather
information about the channel characteristics. After the equalizer finishes
processing the training sequence, it adapts the equalizer weights in
decision-directed mode using a detected version of the output signal. CMA
equalizers are an exception, using neither training mode nor decision-directed
mode.

To train a non-CMA equalizer block at the beginning of each frame throughout
the simulation, follow these steps:

1 Clear the Mode input port check box.

2 Provide the training sequence at the input port labeled Desired. Valid
training symbols are those listed in the Signal constellation vector.
The block operates in training mode at the beginning of each frame and
switches to decision-directed mode when it runs out of training symbols.

1-166

Equalizers

Typically, the symbol periods of the Input and Desired inputs match; that
is, the sample time of the Desired signal is k times the sample time of the
Input signal, where k is the Number of samples per symbol parameter
in the equalizer block. If your training sequence is constant throughout the
simulation, the Simulink Constant block is a convenient way to specify the
sequence without having to specify a sample time explicitly.

To train a non-CMA equalizer block only on selected frames during the
simulation, see “Controlling the Use of Training or Decision-Directed Mode”
on page 1-167.

Equalizing in Decision-Directed Mode
Decision-directed mode means that the equalizer uses a detected version of
its output signal when adapting the weights. Adaptive equalizers typically
start with a training sequence (as mentioned in “Equalizing Using a
Training Sequence” on page 1-166) and switch to decision-directed mode
after exhausting all symbols in the training sequence. CMA equalizers are
an exception, using neither training mode nor decision-directed mode. The
non-CMA equalizer blocks in this library operate in decision-directed mode
when one of these conditions is true:

• The equalizer started processing the current input frame in training mode,
exhausted all symbols in the training sequence frame, and still has more
input symbols to process.

• The Mode input port check box is selected and the Mode input signal is 0.

Controlling the Use of Training or Decision-Directed Mode
You can configure a non-CMA equalizer block so that it adapts in training
mode for the beginning or the entirety of selected frames. To achieve this level
of control over the equalizer’s mode, follow these steps:

1 Enable the Mode input port by checking the Mode input port check box.

2 Send a binary-valued scalar signal to the Mode input port. The Mode
input enables you to toggle back and forth between training mode and
decision-directed mode. The significance of this signal is as follows:

• When the Mode input is 0, the equalizer operates in decision-directed
mode on the entire frame and ignores the Desired input.

1-167

1 Using the Libraries

• When the Mode input is 1, the equalizer operates in training mode at the
beginning of the frame until it exhausts the symbols in the Desired
input, and operates in decision-directed mode afterwards. If the Mode
input is 1 and the Desired input has as many symbols as the Input
signal has, then the equalizer operates in training mode on the entire
frame.

Retrieving the Weights and Error Signal
You can configure the equalizer block so that it outputs the weights and/or
error signal throughout the simulation. The table below indicates how to
enable the extra output ports for these signals.

Signal Port Label How to
Enable

Error signal. For the exact definition, see
the block’s online reference page.

Err Check the
Output error
check box.

A vector listing the weights after the
block has processed either the current
input frame or, in sample-based mode, the
current input sample.

Wts Check the
Output
weights
check box.

Example: LMS Linear Equalizer
This example illustrates the usage of an LMS linear equalizer. The simulation
transmits a 16-QAM signal, modeling the channel using an FIR filter followed
by additive white Gaussian noise. The equalizer receives the signal from
the channel and, as training symbols, a subset of the modulator’s output.
The equalizer operates in training mode at the beginning of each frame and
switches to decision-directed mode when it runs out of training symbols. The
example contrasts the signals before and after equalization to illustrate the
effect of the equalizer.

To open the completed model, click here in the MATLAB Help browser.

1-168

Equalizers

To build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of
the Comm Sources library

- Set M-ary number to 16.

- Set Sample time to 1/1000.

- Select Frame-based outputs.

- Set Samples per frame to 1000.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital
Baseband sublibrary of Modulation

- Set Normalization method to Average Power.

- Set Average power to 1.

• Digital Filter, in the Signal Processing Blockset Filter Designs sublibrary
of Filtering

- Set Transfer function type to FIR (all zeros).

- Set Filter structure to Direct form transposed.

- Set Numerator coefficients to [1 -.3 .1 .2j].

• Submatrix, in the Signal Processing Blockset Indexing sublibrary of Signal
Management

- Set Ending row to Index.

- Set Ending row index to 100.

1-169

1 Using the Libraries

• AWGN Channel, in the Channels library

- Set Mode to Signal to noise ratio (SNR).

- Set SNR to 40.

• LMS Linear Equalizer

- Set Number of taps to 6.

- Clear the Mode input port, Output error, and Output weights
check boxes.

• Two copies of Discrete-Time Scatter Plot Scope, in the Comm Sinks library

- Set Points displayed to 400 in each of the two copies.

Connect the blocks as in the figure. Running the simulation produces two
scatter plots that display the signal before and after equalization, respectively.

Scatter Plots in the Example
Throughout the simulation, the signal before equalization deviates noticeably
from a 16-QAM signal constellation, as below.

Early in the simulation, the equalizer does not appear to improve the scatter
plot. In fact, the equalizer is busy trying to adapt its weights appropriately.
The following figure shows the equalized signal very early in the simulation.

1-170

Equalizers

After some simulation time passes, the equalizer’s weights work well on the
received signal. As a result, the equalized signal looks far more like a 16-QAM
signal constellation than the received signal does. The figure below shows the
equalized signal in its steady state.

Using MLSE Equalizers
The MLSE Equalizer block uses the Viterbi algorithm to equalize a linearly
modulated signal through a dispersive channel. The block outputs the

1-171

1 Using the Libraries

maximum likelihood sequence estimate (MLSE) of the signal, using your
estimate of the channel modeled as a finite input response (FIR) filter.

The block decodes the received signal using these steps:

1 Applies the FIR filter corresponding to the channel estimate to the symbols
in the input signal.

2 Uses the Viterbi algorithm to compute the traceback paths and the state
metric, which are the numbers assigned to the symbols at each step of
the Viterbi algorithm.

3 Outputs the maximum likelihood sequence estimate of the signal, as a
sequence of complex numbers corresponding to the constellation points of
the modulated signal.

An MLSE equalizer yields the best possible performance, in theory, but is
computationally intensive.

When using the MLSE Equalizer block, you specify the channel estimate
and the signal constellation that the modulator in your model uses. If
applicable, you can also specify a preamble and/or postamble that you expect
to accompany your data. For full details on options, see the reference page for
the MLSE Equalizer block.

1-172

2

Modeling Communication
Systems

This chapter presents several examples that illustrate techniques for
modeling a full communication system rather than a small fragment of one.
Because the techniques are mainly relevant in models that involve multiple
areas of functionality (for example, modulation combined with block coding),
the examples in this chapter are more complicated than the examples of
earlier chapters.

Computing Delays (p. 2-2) Computing delays in multirate
models and in models having
multiple delays

Manipulating Delays (p. 2-14) Purpose, methods, and implications
of manipulating delays in a model

2 Modeling Communication Systems

Computing Delays

In this section...

“Section Overview” on page 2-2

“Other References for Delays” on page 2-2

“Sources of Delays” on page 2-3

“ADSL Demo Model” on page 2-3

“Punctured Coding Model” on page 2-6

“Using the Find Delay and Align Signals Blocks” on page 2-10

Section Overview
Some models require you to know how long it takes for data in one portion
of a model to influence a signal in another portion of a model. For example,
when configuring an error rate calculator, you must indicate the delay
between the transmitter and the receiver. If you miscalculate the delay, the
error rate calculator processes mismatched pairs of data and consequently
returns a meaningless result.

This section illustrates the computation of delays in multirate models and
in models where the total delay in a sequence of blocks comprises multiple
delays from individual blocks. This section also indicates how to use the Find
Delay and Align Signals blocks to help deal with delays in a model.

Other References for Delays
Other parts of this documentation set also discuss delays. For information
about dealing with delays or about delays in specific types of blocks, see

• Find Delay block reference page

• Align Signals block reference page

• “Delays in Digital Modulation” on page 1-102

• “Delays of Convolutional Interleavers” on page 1-86

• Viterbi Decoder block reference page

2-2

Computing Delays

• Derepeat block reference page

For discussions of delays in simpler examples than the ones in this section, see

• “Building a Frequency-Shift Keying Model” in Communications Blockset™
Getting Started Guide. (See “Learning About Delays in the Model”.)

• “Example: A Rate 2/3 Feedforward Encoder” on page 1-64.

• “Example: Soft-Decision Decoding” on page 1-68. (See “Delay in Received
Data” on page 1-72.)

• “Example: Delays from Demodulation” on page 1-104.

Sources of Delays
While some blocks can determine their current output value using only the
current input value, other blocks need input values from multiple time steps
to compute the current output value. In the latter situation, the block incurs a
delay. An example of this case is when the Derepeat block must average five
samples from a scalar signal. The block must delay computing the average
until it has received all five samples.

In general, delays in your model might come from various sources:

• Digital demodulators

• Convolutional interleavers or deinterleavers

• Equalizers

• Viterbi Decoder block

• Buffering, downsampling, derepeating, and similar signal operations

• Explicit delay blocks, such as Delay and Variable Integer Delay

• Filters

The following discussions include some of these sources of delay.

ADSL Demo Model
This section examines the asymmetric digital subscriber line (ADSL)
demonstration model and aims to compute the correct Receive delay

2-3

2 Modeling Communication Systems

parameter value in one of the Error Rate Calculation blocks in the model.
The model includes delays from convolutional interleaving and an explicit
delay block. To open the ADSL demo model, enter commadsl in the MATLAB
Command Window.

In the ADSL demo, data follows one of two parallel paths, one with a nonzero
delay and the other with a delay of zero. One path includes a convolutional
interleaver and deinterleaver, while the other does not. Near the end of each
path is an Error Rate Calculation block, whose Receive delay parameter
must reflect the delay of the given path. The rest of the discussion makes an
observation about frame periods in the model and then considers the path
for interleaved data.

Frame Periods in the Model
Before searching for individual delays, first observe that most signal lines
throughout the model share the same frame period; to see this, enable the
Sample time colors option from the Port/signal displays submenu of the
model window’s Format menu. This option colors blocks and signals according
to their frame periods (or sample periods, in the case of sample-based signals).
All signal lines at the top level of the model are the same color, which means
that they share the same frame period. As a consequence, frames are a
convenient unit for measuring delays in the blocks that process these signals.
In the computation of the cumulative delay along a path, the weighted average
(of numbers of frames, weighted by each frame’s period) reduces to a sum.

Path for Interleaved Data
In the transmitter portion of the model, the interleaved path is the lower
branch, shown in yellow below. Similarly, the interleaved path in the receiver
portion of the model is the lower branch. Near the end of the interleaved
path is an Error Rate Calculation block that computes the value labeled
Interleaved BER.

2-4

Computing Delays

The following table summarizes the delays in the path for noninterleaved
data. Subsequent paragraphs explain the delays in more detail and explain
why the total delay relative to the Error Rate Calculation block is one frame,
or 776 samples.

Block Delay, in
Output
Samples from
Individual
Block

Delay, in
Frames

Delay, in Input
Samples to
Error Rate
Calculation
Block

Convolutional
Interleaver and
Convolutional
Deinterleaver
pair

40

Delay 800

1 (combined) 776 (combined)

Total N/A 1 776

Interleaving. Unlike the noninterleaved path, the interleaved path contains
a Convolutional Interleaver block in the transmitter and a Convolutional
Deinterleaver block in the receiver. The delay of the interleaver/deinterleaver
pair is the product of the Rows of shift registers parameter, the Register
length step parameter, and one less than the Rows of shift registers
parameter. In this case, the delay of the interleaver/deinterleaver pair turns
out to be 5*2*4 = 40 samples.

Delay Block. The receiver portion of the interleaved path also contains a
Delay block, whose purpose is explained in “Aligning Words of a Block Code” on
page 2-18. This block explicitly causes a delay of 800 samples having the same
sample time as the 40 samples of delay from the interleaver/deinterleaver
pair. Therefore, the total delay from interleaving, deinterleaving, and the
explicit delay is 840 samples. These 840 samples make up one frame of data
leaving the Delay block.

Summing the Delays. No other blocks in the interleaved path of the demo
cause any delays. Adding the delays from the interleaver/deinterleaver pair
and the Delay block indicates that the total delay in the interleaved path
is one frame.

2-5

2 Modeling Communication Systems

Total Delay Relative to Error Rate Calculation Block. The Error Rate
Calculation block that computes the value labeled Interleaved BER requires
a Receive delay parameter value that is equivalent to one frame. The
Receive delay parameter is measured in samples and each input frame to
the Error Rate Calculation block contains 776 samples. Also, the frame rate
at the outports of all delay-causing blocks in the interleaved path equals the
frame rate at the inport of the Error Rate Calculation block. Therefore, the
correct value for the Receive delay parameter is 776 samples.

Punctured Coding Model
This section discusses a punctured coding model that includes delays from
decoding, downsampling, and filtering. Two Error Rate Calculation blocks
in the model work correctly if and only if their Receive delay parameters
accurately reflect the delays in the model. To open the model, enter punctdoc
in the MATLAB Command Window.

Frame Periods in the Model
Before searching for individual delays, first enable the Sample time colors
option from the Port/signal displays submenu of the model window’s

2-6

Computing Delays

Format menu. Only the rightmost portion of the model differs in color
from the rest of the model. This means that all signals and blocks in the
model except those in the rightmost edge share the same frame period.
Consequently, frames at this predominant frame rate are a convenient unit for
measuring delays in the blocks that process these signals. In the computation
of the cumulative delay along a path, the weighted average (of numbers of
frames, weighted by each frame’s period) reduces to a sum.

The yellow blocks represent multirate systems, while the AWGN Channel
block and the Rx Filter block run at a higher frame rate than most other
blocks in the model.

Inner Error Rate Block
The block labeled Inner Error Rate, located near the center of the model, is a
copy of the Error Rate Calculation block from the Sinks library. It computes
the bit error rate for the portion of the model that excludes the punctured
convolutional code. In the portion of the model between this block’s two input
signals, delays come from the Tx Filter, Rx Filter, and Downsample blocks, as
summarized in the following table. This section explains why the Inner Error
Rate block’s Receive delay parameter is the total delay value of 16.

Block Delay, in
Samples at
Individual
Block

Delay, in
Frames at
Predominant
Frame Rate

Delay, in Input
Samples to
Inner Error
Rate Block

Tx Filter 3 3/2 6

Rx Filter 3 (relative to
input of Tx Filter
block)

3/2 6

Downsample 2 1 4

Total N/A 4 16

Tx Filter Block. The block labeled Tx Filter is a copy of the FIR Interpolation
block in Signal Processing Blockset™ software. It upsamples the input signal
by a factor of 8 and applies a square-root raised cosine filter. The value of the
block’s FIR filter coefficients parameter is

2-7

2 Modeling Communication Systems

rcosine(1, 8, 'sqrt', 0.5, 3)

where the ratio 3/1 indicates that the delay caused by the filter is 3 times
the sample period (not frame period) of the signal before upsampling.
Because the input signal is not upsampled and is a two-sample frame at the
model’s predominant frame rate, the delay is equivalent to 3/2 frames at the
predominant frame rate.

Rx Filter Block. The block labeled Rx Filter is another copy of the FIR
Interpolation block, but it differs from the Tx Filter block in that its
Interpolation factor parameter is 1 instead of 8. The values of that
parameter differ in the two filter blocks because the Tx Filter block needs to
upsample the signal to prepare for transmission along the channel, while the
Rx Filter processes a signal that is already upsampled and needs no further
upsampling. Thus the Rx Filter block merely applies a square-root raised
cosine filter without upsampling its input data. As in the case of the Tx Filter
block, the delay caused by the Rx Filter block is three times the sample period
(not frame period) of the signal without upsampling. The frame rate without
upsampling is just the model’s predominant frame rate, so the delay of the Rx
Filter block is the same as that of the Tx Filter block. That is, the delay is
equivalent to 3/2 frames at the predominant frame rate.

Note This example uses the FIR Interpolation block approach to illustrate
how to deal with multiple frame rates in the same model. Alternatively, the
model could have used the Raised Cosine Transmit Filter and Raised Cosine
Receive Filter blocks in Communications Blockset software. In that case, the
frame rate would be constant throughout the system, and the total delay
values discussed in this document would be different.

Downsample Block. The Downsample block reduces the frame rate of the
filtered received data. Its delay is one output frame, as stated on the reference
page for the Downsample block. Because the frame rate at the outport equals
the model’s predominant frame rate, the delay of the Downsample block is one
frame at the predominant frame rate.

2-8

Computing Delays

Summing the Delays. No other blocks in the portion of the model between
the Inner Error Rate block’s two input signals cause any delays. Adding the
two 3/2-frame delays from the two filter blocks with the one-frame delay from
the Downsample block indicates that the total delay in this portion of the
model is four frames.

Total Delay Relative to Inner Error Rate Block. The Inner Error Rate
block requires a Receive delay parameter value that is equivalent to four
frames. The Receive delay parameter is measured in samples and each
input frame to the Inner Error Rate block contains four samples. Therefore,
the correct value for the Receive delay parameter is 16 samples.

Outer Error Rate Block
The block labeled Outer Error Rate, located at the left of the model, is a copy
of the Error Rate Calculation block from the Sinks library. It computes the bit
error rate for the entire model, including the punctured convolutional code.
Delays come from the Tx Filter, Rx Filter, Downsample, and Viterbi Decoder
blocks, as summarized in the table below. This section explains why the Outer
Error Rate block’s Receive delay parameter is the total delay value of 108.

Block Delay, in
Samples at
Individual
Block

Delay, in
Frames at
Predominant
Frame Rate

Delay, in Input
Samples to
Outer Error
Rate Block

Tx Filter 3 3/2 9/2

Rx Filter 3 (relative to
input of Tx Filter
block)

3/2 9/2

Downsample 2 1 3

Viterbi Decoder 96 32 96

Total N/A 36 108

Filter and Downsample Blocks. The Tx Filter, Rx Filter, and Downsample
blocks have a combined delay of four frames at the model’s predominant frame
rate. For details, see “Inner Error Rate Block” on page 2-7.

2-9

2 Modeling Communication Systems

Viterbi Decoder Block. The Viterbi Decoder block decodes the convolutional
code, and the algorithm’s use of a traceback path causes a delay. The block
processes a frame-based signal and has Operation mode set to Continuous.
Therefore, the delay, measured in output samples, is equal to the Traceback
depth parameter value of 96. (The delay amount is stated on the reference
page for the Viterbi Decoder block.) Because the output of the Viterbi Decoder
block is precisely one of the inputs to the Outer Error Rate block, it is easier to
consider the delay to be 96 samples rather than to convert it to an equivalent
number of frames.

Total Delay Relative to Outer Error Rate Block. The Outer Error Rate
block requires a Receive delay parameter value that is equivalent to four
frames plus 96 samples. The Receive delay parameter is measured in
samples, and each input frame to the Outer Error Rate block contains three
samples. Therefore, the correct value for the Receive delay parameter is
4*3+96 = 108 samples.

Note The Outer Error Rate block accounts for the four-frame delay from
filtering and downsampling by expressing it as 12 samples when computing
the Receive delay parameter. Recall that the Inner Error Rate block
accounts for the same four-frame delay but expresses it as 16 samples, not
12. The expressions differ because the two error rate blocks express delays in
terms of samples rather than frames, yet process signals of different sizes.

Using the Find Delay and Align Signals Blocks
The preceding discussions explained why certain Error Rate Calculation
blocks in the models had specific Receive delay parameter values. You could
have arrived at those numbers independently by using the Find Delay block,
or you could have avoided needing to know those numbers by using the Align
Signals block. This section explains both techniques using the ADSL demo
model, commadsl, as an example. Applying the techniques to the punctured
convolutional coding example, discussed in “Punctured Coding Model” on
page 2-6, would be similar.

2-10

Computing Delays

Using the Find Delay Block to Determine the Correct Receive
Delay
Recall from “Path for Interleaved Data” on page 2-4 that the delay in the path
for interleaved data is 776 samples. To have the Find Delay block compute
that value for you, use this procedure:

1 Insert a Find Delay block and a Display block in the model near the Error
Rate Calculation block that computes the value labeled Interleaved BER.

2 Connect the blocks as shown below.

3 Set the Find Delay block’s Correlation window length parameter to a
value substantially larger than 776, such as 2000.

Note You must use a sufficiently large correlation window length or else
the values produced by the Find Delay block do not stabilize at a correct
value.

4 Run the simulation.

The new Display block now shows the value 776, as expected.

Using the Align Signals Block Before Computing the Error Rate
To use the Error Rate Calculation block to compute the value labeled
Interleaved BER without having to set the Receive delay parameter to a
nonzero value, you can use the Align Signals block to automatically align the

2-11

2 Modeling Communication Systems

transmitted and received signals before the Error Rate Calculation block
performs its computations. Use this procedure:

1 Insert an Align Signals block and a Display block in the model near the
Error Rate Calculation block that computes the value labeled Interleaved
BER.

2 Connect the blocks as shown below.

3 Set the Align Signals block’s Correlation window length parameter to a
value substantially larger than 776, such as 2000.

Note You must use a sufficiently large correlation window length or else
the Align Signals block cannot find the correct amount by which to delay
one of the signals. If the delay output from the Align Signals block does
not stabilize at a constant value, the correlation window length is probably
too small.

4 Set the Error Rate Calculation block’s Receive delay parameter to 0.
You might also want to set the block’s Computation delay parameter to
a nonzero value to account for the possibility that the Align Signals block
takes a nonzero amount of time to stabilize on the correct amount by which
to delay one of the signals.

5 Run the simulation.

The new Display block now shows the value 776. Also, the Align Signals block
delays one signal relative to the other so that the signals are aligned. The
Error Rate Calculation block therefore processes two signals that are properly
aligned with each other and does not need to use a nonzero Receive delay
parameter to attempt any further alignment.

2-12

Computing Delays

Examining the delay output signal from the Align Signals block, using the
Display block as in the figure above, is important because if the delay output
signal does not stabilize at a constant value, the signals are not truly aligned
and the error rate is not reliable. In this case, the Align Signals block’s
Correlation window length parameter is probably too small.

2-13

2 Modeling Communication Systems

Manipulating Delays

In this section...

“Section Overview” on page 2-14

“Delays and Alignment Problems” on page 2-14

“Aligning Words of a Block Code” on page 2-18

“Aligning Words for Interleaving” on page 2-20

“Aligning Words of a Concatenated Code” on page 2-23

Section Overview
Some models require you not only to compute delays but to manipulate
them. For example, if a model incurs a delay between a block encoder and
its corresponding decoder, the decoder might misinterpret the boundaries
between the codewords that it receives and, consequently, return meaningless
results. More generally, such a situation can arise when the path between
paired components of a block-oriented operation (such as interleaving, block
coding, or bit-to-integer conversions) includes a delay-causing operation (such
as those listed in “Sources of Delays” on page 2-3).

To avoid this problem, you can insert an additional delay of an appropriate
amount between the encoder and decoder. If the model also computes an
error rate, then the additional delay affects that process, as described in
“Computing Delays” on page 2-2. This section uses examples to illustrate
the purpose, methods, and implications of manipulating delays in a variety
of circumstances.

Delays and Alignment Problems
This section illustrates the sensitivity of block-oriented operations to delays,
using a small model that aims to capture the essence of the problem in a
simple form. Open the model by entering alignmentdoc in the MATLAB®

Command Window. Then run the simulation so that the Display blocks show
relevant values.

2-14

Manipulating Delays

In this model, two coding blocks create and decode a block code. Two copies
of the Delay block create a delay between the encoder and decoder. The two
Delay blocks have different purposes in this illustrative model:

• The Inherent Delay block represents any delay-causing blocks that might
occur in a model between the encoder and decoder. See “Sources of Delays”
on page 2-3 for a list of possibilities that might occur in a more realistic
model.

• The Added Delay block is an explicit delay that you insert to produce
an appropriate amount of total delay between the encoder and decoder.
For example, the commadsl model contains a Delay block that serves this
purpose.

Observing the Problem
By default, the Delay parameters in the Inherent Delay and Added Delay
blocks are set to 1 and 0, respectively. This represents the situation in which
some operation causes a one-bit delay between the encoder and decoder, but
you have not yet tried to compensate for it. The total delay between the
encoder and decoder is one bit. You can see from the blocks labeled Word and
Delayed Word that the codeword that leaves the encoder is shifted downward
by one bit by the time it enters the decoder. The decoder receives a signal in
which the boundary of the codeword is at the second bit in the frame, instead

2-15

2 Modeling Communication Systems

of coinciding with the beginning of the frame. That is, the codewords and the
frames that hold them are not aligned with each other.

This nonalignment is problematic because the Hamming Decoder block
assumes that each frame begins a new codeword. As a result, it tries to decode
a word that consists of the last bit of one output frame from the encoder
followed by the first six bits of the next output frame from the encoder. You
can see from the Error Rate Display block that the error rate from this
decoding operation is close to 1/2. That is, the decoder rarely recovers the
original message correctly.

To use an analogy, suppose someone corrupts a paragraph of prose by moving
each period symbol from the end of the sentence to the end of the first word
of the next sentence. If you try to read such a paragraph while assuming
that a new sentence begins after a period, you misunderstand the start and
end of each sentence. As a result, you might fail to understand the meaning
of the paragraph.

To see how delays of different amounts affect the decoder’s performance,
vary the values of the Delay parameter in the Added Delay block and the
Receive delay parameter in the Error Rate Calculation block and then run
the simulation again. Many combinations of parameter values produce error
rates that are close to 1/2. Furthermore, if you examine the transmitted and
received data by entering

[tx rx]

in the MATLAB Command Window, you might not detect any correlation
between the transmitted and received data.

Correcting the Delays
Some combinations of parameter values produce error rates of zero because
the delays are appropriate for the system. For example:

• In the Added Delay block, set Delay to 6.

• In the Error Rate Calculation block, set Receive delay to 4.

• Run the simulation.

• Enter [tx rx] in the MATLAB Command Window.

2-16

Manipulating Delays

The top number in the Error Rate Display block shows that the error rate is
zero. The decoder recovered each transmitted message correctly. However,
the Word and Displayed Word blocks do not show matching values. It is
not immediately clear how the encoder’s output and the decoder’s input
are related to each other. To clarify the matter, examine the output in the
MATLAB Command Window. The sequence along the first column (tx)
appears in the second column (rx) four rows later. To confirm this, enter

isequal(tx(1:end-4),rx(5:end))

in the MATLAB Command Window and observe that the result is 1 (true).
This last command tests whether the first column matches a shifted version of
the second column. Shifting the MATLAB vector rx by four rows corresponds
to the Error Rate Calculation block’s behavior when its Receive delay
parameter is set to 4.

To summarize, these special values of the Delay and Receive delay
parameters work for these reasons:

• Combined, the Inherent Delay and Added Delay blocks delay the encoded
signal by a full codeword rather than by a partial codeword. Thus the
decoder is correct in its assumption that a codeword boundary falls at the
beginning of an input frame and decodes the words correctly. However, the
delay in the encoded signal causes each recovered message to appear one
word later, that is, four bits later.

• The Error Rate Calculation block compensates for the one-word delay in
the system by comparing each word of the transmitted signal with the data
four bits later in the received signal. In this way, it correctly concludes
that the decoder’s error rate is zero.

Note These are not the only parameter values that produce error rates of
zero. Because the code in this model is a (7, 4) block code and the inherent
delay value is 1, you can set the Delay and Receive delay parameters to
7k-1 and 4k, respectively, for any positive integer k. It is important that
the sum of the inherent delay (1) and the added delay (7k-1) is a multiple
of the codeword length (7).

2-17

2 Modeling Communication Systems

Aligning Words of a Block Code
The ADSL demo, discussed in “ADSL Demo Model” on page 2-3, illustrates
the need to manipulate the delay in a model so that each frame of data that
enters a block decoder has a codeword boundary at the beginning of the frame.
The need arises because the path between a block encoder and block decoder
includes a delay-causing convolutional interleaving operation. This section
explains why the model uses a Delay block to manipulate the delay between
the convolutional deinterleaver and the block decoder, and why the Delay
block is configured as it is. To open the ADSL demo model, enter commadsl
in the MATLAB Command Window.

Misalignment of Codewords
In the ADSL demo, the Convolutional Interleaver and Convolutional
Deinterleaver blocks appear after the Scrambler & FEC subsystems but
before the Descrambler & FEC subsystems. These two subsystems contain
blocks that perform Reed-Solomon coding, and the coding blocks expect each
frame of input data to start on a new word rather than in the middle of a word.

As discussed in “Path for Interleaved Data” on page 2-4, the delay of the
interleaver/deinterleaver pair is 40 samples. However, the input to the
Descrambler & FEC subsystem is a frame of size 840, and 40 is not a multiple
of 840. Consequently, the signal that exits the Convolutional Deinterleaver
block is a frame whose first entry does not represent the beginning of a
new codeword. As described in “Observing the Problem” on page 2-15, this
misalignment, between codewords and the frames that contain them, prevents
the decoder from decoding correctly.

Inserting a Delay to Correct the Alignment
The ADSL demo solves the problem by moving the word boundary from the
41st sample of the 840-sample frame to the first sample of a successive frame.
Moving the word boundary is equivalent to delaying the signal. To this end,
the demo contains a Delay block between the Convolutional Deinterleaver
block and the Descrambler & FEC subsystem.

2-18

Manipulating Delays

The Delay parameter in the Delay block is 800 because that is the minimum
number of samples required to shift the 41st sample of one 840-sample frame
to the first sample of the next 840-sample frame. In other words, the sum of
the inherent 40-sample delay (from the interleaving/deinterleaving process)
and the artificial 800-sample delay is a full frame of data, not a partial frame.

This 800-sample delay has implications for other parts of the model,
specifically, the Receive delay parameter in one of the Error Rate
Calculation blocks. For details about how the delay influences the value of
that parameter, see “Path for Interleaved Data” on page 2-4.

Using the Find Delay Block
The preceding discussion explained why an 800-sample delay is necessary to
correct the misalignment between codewords and the frames that contain
them. Knowing that the Descrambler & FEC subsystem requires frame
boundaries to occur on word boundaries, you could have arrived at the number
800 independently by using the Find Delay block. Use this procedure:

1 Insert a Find Delay block and a Display block in the model.

2 Create a branch line that connects the input of the Convolutional
Interleaver block to the sRef input of the Find Delay block.

3 Create another branch line that connects the output of the Convolutional
Deinterleaver block to the sDel input of the Find Delay block.

4 Connect the delay output of the Find Delay block to the new Display block.
The modified part of the model now looks like the following image (which
also shows drop shadows on key blocks to emphasize the modifications).

2-19

2 Modeling Communication Systems

5 Show the dimensions of each signal in the model by enabling the Signal
dimensions feature from the Port/signal displays submenu of the model
window’s Format menu.

6 Run the simulation.

The new Display block now shows the value 40. Also, the display of signal
dimensions shows that the output from the Convolutional Deinterleaver block
is a frame of length 840. These results indicate that the sequence of blocks
between the Convolutional Interleaver and Convolutional Deinterleaver,
inclusive, delays an 840-sample frame by 40 samples. An additional delay of
800 samples brings the total delay to 840. Because the total delay is now a
multiple of the frame length, the delayed deinterleaved data can be decoded.

Aligning Words for Interleaving
This section describes an example that manipulates the delay before a
deinterleaver, because the path between the interleaver and deinterleaver

2-20

Manipulating Delays

includes a delay from demodulation. To open the model, enter gmskintdoc
in the MATLAB Command Window.

The model includes block coding, helical interleaving, and GMSK modulation.
The table below summarizes the individual block delays in the model.

Block Delay, in Output
Samples from
Individual Block

Reference

GMSK Demodulator
Baseband

16 “Delays in Digital
Modulation” on page
1-102

Helical Deinterleaver 42 “Delays of
Convolutional
Interleavers” on page
1-86

Delay 5 Delay reference page

Misalignment of Interleaved Words
The demodulation process in this model causes a delay between the
interleaver and deinterleaver. Because the deinterleaver expects each frame
of input data to start on a new word, it is important to ensure that the total

2-21

2 Modeling Communication Systems

delay between the interleaver and deinterleaver includes one or more full
frames but no partial frames.

The delay of the demodulator is 16 output samples. However, the input to the
Helical Deinterleaver block is a frame of size 21, and 16 is not a multiple of 21.
Consequently, the signal that exits the GMSK Demodulator Baseband block
is a frame whose first entry does not represent the beginning of a new word.
As described in “Observing the Problem” on page 2-15, this misalignment
between words and the frames that contain them hinders the deinterleaver.

Inserting a Delay to Correct the Alignment
The model moves the word boundary from the 17th sample of the 21-sample
frame to the first sample of the next frame. Moving the word boundary is
equivalent to delaying the signal by five samples. The Delay block between
the GMSK Demodulator Baseband block and the Helical Deinterleaver block
accomplishes such a delay. The Delay block has its Delay parameter set to 5.

Combining the effects of the demodulator and the Delay block, the total delay
between the interleaver and deinterleaver is a full 21-sample frame of data,
not a partial frame.

Checking Alignment of Block Codewords
The interleaver and deinterleaver cause a combined delay of 42 samples
measured at the output from the Helical Deinterleaver block. Because the
delayed output from the deinterleaver goes next to a Reed-Solomon decoder,
and because the decoder expects each frame of input data to start on a new
word, it is important to ensure that the total delay between the encoder and
decoder includes one or more full frames but no partial frames.

In this case, the 42-sample delay is exactly two frames. Therefore, it is not
necessary to insert a Delay block between the Helical Deinterleaver block and
the Binary-Output RS Decoder block.

Computing Delays to Configure the Error Rate Calculation
Blocks
The model contains two Error Rate Calculation blocks, labeled Channel
Error Rate and System Error Rate. Each of these blocks has a Receive
delay parameter that must reflect the delay of the path between the block’s

2-22

Manipulating Delays

Tx and Rx signals. The following table explains the Receive delay values
in the two blocks.

Block Receive Delay
Value

Reason

Channel Error
Rate

16 Delay of GMSK Demodulator
Baseband block, in samples

System Error
Rate

15*3 Three fifteen-sample frames:
one frame from the GMSK
Demodulator Baseband and Delay
blocks, and two frames from the
interleaver/deinterleaver pair

Aligning Words of a Concatenated Code
This section describes an example that manipulates the delay between the two
portions of a concatenated code decoder, because the first portion includes a
delay from Viterbi decoding while the second portion expects frame boundaries
to coincide with word boundaries. To open the model, enter concatdoc in the
MATLAB Command Window. It uses the block and convolutional codes from
the commdvbt demo, but simplifies the overall design a great deal.

2-23

2 Modeling Communication Systems

The model includes a shortened block code and a punctured convolutional
code. All signals and blocks in the model share the same frame period. The
following table summarizes the individual block delays in the model.

Block Delay, in Output Samples from Individual
Block

Viterbi Decoder 136

Delay 1496 (that is, 1632 - 136)

Misalignment of Block Codewords
The Viterbi decoding process in this model causes a delay between the Integer
to Bit Converter block and the Bit to Integer Converter block. Because the
latter block expects each frame of input data to start on a new 8-bit word, it
is important to ensure that the total delay between the two converter blocks
includes one or more full frames but no partial frames.

The delay of the Viterbi Decoder block is 136 output samples. However,
the input to the Bit to Integer Converter block is a frame of size 1632.

2-24

Manipulating Delays

Consequently, the signal that exits the Viterbi Decoder block is a frame whose
first entry does not represent the beginning of a new word. As described in
“Observing the Problem” on page 2-15, this misalignment between words and
the frames that contain them hinders the converter block.

Note The outer decoder in this model (Integer-Output RS Decoder) also
expects each frame of input data to start on a new codeword. Therefore, the
misalignment issue in this model affects many concatenated code designs, not
just those that convert between binary-valued and integer-valued signals.

Inserting a Delay to Correct the Alignment
The model moves the word boundary from the 137th sample of the
1632-sample frame to the first sample of the next frame. Moving the word
boundary is equivalent to delaying the signal by 1632-136 samples. The Delay
block between the Viterbi Decoder block and the Bit to Integer Converter
block accomplishes such a delay. The Delay block has its Delay parameter
set to 1496.

Combining the effects of the Viterbi Decoder block and the Delay block, the
total delay between the interleaver and deinterleaver is a full 1632-sample
frame of data, not a partial frame.

Computing Delays to Configure the Error Rate Calculation
Blocks
The model contains two Error Rate Calculation blocks, labeled Inner Error
Rate and Outer Error Rate. Each of these blocks has a Receive delay
parameter that must reflect the delay of the path between the block’s Tx and
Rx signals. The table below explains the Receive delay values in the two
blocks.

2-25

2 Modeling Communication Systems

Block Receive Delay
Value

Reason

Inner Error
Rate

136 Delay of Viterbi Decoder block, in
samples

Outer Error
Rate

1504 (188*8
bits)

One 188-sample frame, from the
combination of the inherent delay of
the Viterbi Decoder block and the
added delay of the Delay block

2-26

3

Data Type Support

The inputs and outputs of the communications blocks support various data
types. This chapter gives an overview of the data type support. For details,
refer to the block reference pages.

Communications Block Data Type
Support (p. 3-2)

Chart that lists the data types
supported by each block

3 Data Type Support

Communications Block Data Type Support
The following table shows which data types are supported for each block in
Communications Blockset™ software. ’•’ indicates support for both main
input and main output ports. ’I’ and ’O’ respectively indicate support for
either the main input ports or main output ports.

For some blocks, changing to single outputs can lead to different results when
compared with double outputs for the same set of parameters. Also, some
blocks may naturally output different data types than what they receive (e.g.
digital modulators). See individual block reference pages for details.

Channels Library

Block Double Single Boolean Base
Integer

Fixed-
Point

AWGN Channel • •

Binary Symmetric Channel • •

Multipath Rayleigh Fading
Channel

•

Multipath Rician Fading Channel •

Communications Filters Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Gaussian Filter • • •

Ideal Rectangular Pulse Filter • • •

Integrate and Dump • •

Raised Cosine Receive Filter • • •

Raised Cosine Transmit Filter • • •

Windowed Integrator • • •

3-2

Communications Block Data Type Support

Communications Sinks Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Discrete-Time Eye Diagram Scope • • • • •

Discrete-Time Scatter Plot Scope • • • •

Discrete-Time Signal Trajectory
Scope

• • • •

Error Rate Calculation • • • • •

Communications Sources (Noise Generators) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Gaussian Noise Generator • O

Rayleigh Noise Generator • O

Rician Noise Generator • O

Uniform Noise Generator • O

Communications Sources (Random Data Sources) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Bernoulli Binary Generator • • • •

Poisson Integer Generator • •

Random Integer Generator • • • •

Communications Sources (Sequence Generators) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Barker Code Generator • •

3-3

3 Data Type Support

Communications Sources (Sequence Generators) Library (Continued)

Block Double Single Boolean Base
Integer

Fixed-
Point

Gold Sequence Generator • •

Hadamard Code Generator • •

Kasami Sequence Generator • •

OVSF Code Generator • •

PN Sequence Generator • • •

Walsh Code Generator • •

Equalizers Library

Block Double Single Boolean Base
Integer

Fixed-
Point

CMA Equalizer •

LMS Decision Feedback Equalizer •

LMS Linear Equalizer •

MLSE Equalizer • •

Normalized LMS Decision
Feedback Equalizer

•

Normalized LMS Linear Equalizer •

RLS Decision Feedback Equalizer •

RLS Linear Equalizer •

Sign LMS Decision Feedback
Equalizer

•

Sign LMS Linear Equalizer •

Variable Step LMS Decision
Feedback Equalizer

•

Variable Step LMS Linear
Equalizer

•

3-4

Communications Block Data Type Support

Error Detection and Correction (Block) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

BCH Decoder • •

BCH Encoder • •

Binary Cyclic Decoder • •

Binary Cyclic Encoder • •

Binary Linear Decoder • •

Binary Linear Encoder • •

Binary-Input RS Encoder • •

Binary-Output RS Decoder • •

Hamming Decoder • •

Hamming Encoder • •

Integer-Input RS Encoder • • • •

Integer-Output RS Decoder • • • •

LDPC Decoder • •

LDPC Encoder • • • •

Error Detection and Correction (Convolutional) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

APP Decoder • •

Convolutional Encoder • • • • •

Viterbi Decoder • • • • •

3-5

3 Data Type Support

Error Detection and Correction (CRC) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

CRC-N Generator • •

CRC-N Syndrome Detector • •

General CRC Generator • •

General CRC Syndrome Detector • •

Interleaving (Block) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Algebraic Deinterleaver • • • • •

Algebraic Interleaver • • • • •

General Block Deinterleaver • • • • •

General Block Interleaver • • • • •

Matrix Deinterleaver • • • • •

Matrix Helical Scan Deinterleaver • • • • •

Matrix Helical Scan Interleaver • • • • •

Matrix Interleaver • • • • •

Random Deinterleaver • • • • •

Random Interleaver • • • • •

Interleaving (Convolutional) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Convolutional Deinterleaver • • • • •

Convolutional Interleaver • • • • •

3-6

Communications Block Data Type Support

Interleaving (Convolutional) Library (Continued)

Block Double Single Boolean Base
Integer

Fixed-
Point

General Multiplexed
Deinterleaver

• • • • •

General Multiplexed Interleaver • • • • •

Helical Deinterleaver • • • • •

Helical Interleaver • • • • •

Modulation (Analog Passband) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

DSB AM Demodulator Passband •

DSB AM Modulator Passband •

DSBSC AM Demodulator
Passband

•

DSBSC AM Modulator Passband •

FM Demodulator Passband •

FM Modulator Passband •

PM Demodulator Passband •

PM Modulator Passband •

SSB AM Demodulator Passband •

SSB AM Modulator Passband •

Modulation (Digital Baseband AM) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

General QAM Demodulator
Baseband

• • O O

3-7

3 Data Type Support

Modulation (Digital Baseband AM) Library (Continued)

Block Double Single Boolean Base
Integer

Fixed-
Point

General QAM Modulator
Baseband

• O I I •

M-PAM Demodulator Baseband • • O O •

M-PAM Modulator Baseband • O I I •

Rectangular QAM Demodulator
Baseband

• • O O
• (square

QAM
only)

Rectangular QAM Modulator
Baseband

• O I I
• (square

QAM
only)

Modulation (Digital Baseband CPM) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

CPFSK Demodulator Baseband • I O O

CPFSK Modulator Baseband • O I I

CPM Demodulator Baseband • I O O

CPM Modulator Baseband • O I I

GMSK Demodulator Baseband • I O O

GMSK Modulator Baseband • O I I

MSK Demodulator Baseband • I O O

MSK Modulator Baseband • O I I

3-8

Communications Block Data Type Support

Modulation (Digital Baseband FM) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

M-FSK Demodulator Baseband • I O O

M-FSK Modulator Baseband • O I I

Modulation (Digital Baseband PM) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

BPSK Demodulator Baseband • I O O •

BPSK Modulator Baseband • O I I •

DBPSK Demodulator Baseband • I O O

DBPSK Modulator Baseband • O I I

DQPSK Demodulator Baseband • I O O

DQPSK Modulator Baseband • O I I

M-DPSK Demodulator Baseband • I O O

M-DPSK Modulator Baseband • O I I

M-PSK Demodulator Baseband
• I O O • (M=8

only)

M-PSK Modulator Baseband • O I I •

OQPSK Demodulator Baseband • I O O

OQPSK Modulator Baseband • O I I •

QPSK Demodulator Baseband • I O O •

QPSK Modulator Baseband • O I I •

3-9

3 Data Type Support

Modulation (Digital Baseband TCM) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

General TCM Decoder • I O

General TCM Encoder • O I

M-PSK TCM Decoder • I O

M-PSK TCM Encoder • O I

Rectangular QAM TCM Decoder • I O

Rectangular QAM TCM Encoder • O I

RF Impairments Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Free Space Path Loss • •

I/Q Imbalance • •

Memoryless Nonlinearity • •

Phase Noise • •

Phase/Frequency Offset • •

Receiver Thermal Noise • •

Sequence Operations Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Deinterlacer • • • • •

Derepeat • •

Descrambler • • •

Insert Zero • • • • •

Interlacer • • • • •

3-10

Communications Block Data Type Support

Sequence Operations Library (Continued)

Block Double Single Boolean Base
Integer

Fixed-
Point

Puncture • • • • •

Repeat • •

Scrambler • • •

Source Coding Library

Block Double Single Boolean Base
Integer

Fixed-
Point

A-Law Compressor •

A-Law Expander •

Differential Decoder • • • • •

Differential Encoder • • • • •

Mu-Law Compressor •

Mu-Law Expander •

Quantizing Decoder • •

Quantizing Encoder • •

Synchronization (Carrier Phase Recovery) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

CPM Phase Recovery • •

M-PSK Phase Recovery • •

3-11

3 Data Type Support

Synchronization (Components) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Baseband PLL •

Charge Pump PLL •

Discrete-Time VCO • •

Linearized Baseband PLL •

Phase-Locked Loop •

Continuous-Time VCO •

Synchronization (Timing Phase Recovery) Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Early-Late Gate Timing Recovery • •

Gardner Timing Recovery • •

MSK-Type Signal Timing Recovery • •

Mueller-Muller Timing Recovery • •

Squaring Timing Recovery • •

Utility Library

Block Double Single Boolean Base
Integer

Fixed-
Point

Align Signals
• •

• (signed
integers

only)

Bipolar to Unipolar Converter • • O •

Bit to Integer Converter • • I •

Complex Phase Difference • •

3-12

Communications Block Data Type Support

Utility Library (Continued)

Block Double Single Boolean Base
Integer

Fixed-
Point

Complex Phase Shift • •

Data Mapper • • •

dB Conversion • •

Find Delay
• •

• (signed
integers

only)

Integer to Bit Converter • • O •

Unipolar to Bipolar Converter • • I •

3-13

3 Data Type Support

3-14

4

Block Properties Related
to Simulink and Real-Time
Workshop

This chapter gives an overview of Communications block properties related to
Simulink and Real-Time Workshop®.

Communications Blocks in Triggered
Subsystems (p. 4-2)

Explanation of how Communications
blocks work in triggered subsystems

Communications Block Properties
(p. 4-8)

Charts that list the enhancements
supported by each block

4 Block Properties Related to Simulink and Real-Time Workshop

Communications Blocks in Triggered Subsystems

In this section...

“Section Overview” on page 4-2

“Example 1: A Basic Triggered Subsystem” on page 4-2

“Example 2: Importance of the Block Location” on page 4-5

Section Overview
Many Communications Blockset™ blocks work within triggered subsystems.
Refer to “Communications Block Properties” on page 4-8 to see which blocks
have this ability.

A triggered subsystem can be enabled or disabled with an input trigger. In
the two examples that follow, the behavior of Communications blocks in
triggered subsystems is explained.

Example 1: A Basic Triggered Subsystem
The first example is a nonsource triggered subsystem. This compares the
outputs from RS Encoder and RS Decoder pairs when they are inside or
outside a triggered subsystem.

4-2

Communications Blocks in Triggered Subsystems

Model Used for Output Comparison

Inside the Triggered Subsystem

The source is a Bernoulli Binary Generator block with frame-based input,
three samples per frame, and a sample time of 0.1. The triggered signal
is [0 1] with a sample time of 0.3.

4-3

4 Block Properties Related to Simulink and Real-Time Workshop

The RS Encoder and RS Decoder pair within the triggered subsystem is
enabled only when there is a rising signal in the trigger input. When the
trigger receives a falling signal, any processing in the subsystem is disabled,
and the subsystem outputs only what it has stored in memory.

After running the simulation, compare the input signal (input), the output
from the RS Encoder and RS Decoder pair (sim_out), and the output from
the triggered subsystem (trig_out):

>> [input sim_out trig_out]

ans =

1 1 0
0 0 0
1 1 0
1 1 1
0 0 0
1 1 1
1 1 1
1 1 0
0 0 1
0 0 0
0 0 0
1 1 1
1 1 0
0 0 0
1 1 1
1 1 1
0 0 0
0 0 0
0 0 1
0 0 0
1 1 0
1 1 1
0 0 0
1 1 1
0 0 1
1 1 0
0 0 1

4-4

Communications Blocks in Triggered Subsystems

0 0 0
0 0 0
1 1 1
1 1 0
1 1 0
0 0 1

sim_out directly reproduces input, as expected from an RS Encoder and
RS Decoder pair.

trig_out, on the other hand, reproduces input only during the 4th, 5th,
6th...10th, 11th, and 12th samples, and so on, in triplets. According to the
simulation parameters, the trigger was toggling after every third sample of
the input. The mirroring behavior was therefore also being toggled after
every third sample.

On the falling trigger, the subsystem turns off and repeats its previous three
outputs, as can be seen in the 7th, 8th, 9th...13th, 14th, and 15th samples,
and so on. The first three outputs of trig_out are all 0 because, while the
trigger is off, the subsystem did not have any previous outputs in memory.

Example 2: Importance of the Block Location
This is an example of a triggered subsystem that is also a source. The key
point in this model is that everything within the triggered subsystem is
enabled or disabled, including any source blocks.

4-5

4 Block Properties Related to Simulink and Real-Time Workshop

Model Used for Output Comparison

Inside the Triggered Subsystem

4-6

Communications Blocks in Triggered Subsystems

The source is a Gaussian Noise Generator with sample-based input and a
sample time of 1. The triggered signal is [0 1] with a sample time of 1. The
DSP constant blocks serve as driver blocks in this model.

In the triggered subsystem, the sample time for the Gaussian Noise Generator
is -1.

After running the simulation, compare the outputs from the nontriggered
system (sim_out) and the triggered subsystem (trig_out).

>> [sim_out trig_out]

ans =

0.7311 0
1.6390 0.7311
0.0091 0.7311
1.7771 1.6390
1.6605 1.6390
0.2890 0.0091
0.5074 0.0091
3.1751 1.7771
1.6019 1.7771
0.0438 1.6605

-0.7200 1.6605

In this case, the output of the triggered subsystem is not just switching
its output on and off, but seems to be falling behind the output of the
nontriggered system. This is because the Gaussian Noise Generator contained
in the subsystem is also being toggled on and off with the trigger. As a result,
its preset sequence of numbers is not being used up at the same rate as its
counterpart outside the subsystem.

4-7

4 Block Properties Related to Simulink and Real-Time Workshop

Communications Block Properties
The following tables show properties of the Communications blocks related to
Simulink® and Real-Time Workshop® applications.

The “Triggered Subsystem and Asynchronous Signal Support” column shows
which blocks work within a triggered subsystem and support asynchronous
signals. A dot (•) in this column indicates that the block works.

The “Embeddable RTW C-Code” column shows the level of Real-Time
Workshop support as described below:

• Blocks that have been inlined, i.e., S-functions that have TLC, generate
embeddable Real-Time Workshop C-code, and participate in the Simulink
and Real-Time Workshop optimizations. These blocks have a dot (•) in
this column.

• Blocks that are subsystems built of Simulink or Signal Processing
Blockset™ blocks generate embeddable Real-Time Workshop C-code. These
might not, however, participate in all Simulink and Real-Time Workshop
optimizations, because this is dependent on the underlying blocks. These
blocks have an asterisk (*) in this column.

• Blocks that do not support integer-only code generation but otherwise
generate embeddable Real-Time Workshop C-code have a minus sign (-)
in this column.

• Blocks for which code generation might not be applicable, as they are
analog and/or instrumentation blocks, have an N/A in this column.

All blocks support C++ code generation.

Channels Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

AWGN Channel • •

4-8

Communications Block Properties

Channels Library (Continued)

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Binary Symmetric Channel • *

Multipath Rayleigh Fading Channel •

Multipath Rician Fading Channel •

Communications Filters Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Gaussian Filter • *

Ideal Rectangular Pulse Filter • *

Integrate and Dump
• (single rate

operation)
•

Raised Cosine Receive Filter • *

Raised Cosine Transmit Filter • *

Windowed Integrator • *

Communications Sinks Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Discrete-Time Eye Diagram Scope N/A

4-9

4 Block Properties Related to Simulink and Real-Time Workshop

Communications Sinks Library (Continued)

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Discrete-Time Scatter Plot Scope N/A

Discrete-Time Signal Trajectory Scope N/A

Error Rate Calculation • •

Communications Sources (Noise Generators) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Gaussian Noise Generator • *

Rayleigh Noise Generator • *

Rician Noise Generator • *

Uniform Noise Generator • *

Communications Sources (Random Data Sources) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Bernoulli Binary Generator • *

Poisson Integer Generator • •

Random Integer Generator • *

4-10

Communications Block Properties

Communications Sources (Sequence Generators) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Barker Code Generator • *, -

Gold Sequence Generator • •

Hadamard Code Generator • *, -

Kasami Sequence Generator • •

OVSF Code Generator • *, -

PN Sequence Generator • •

Walsh Code Generator • *, -

Equalizers Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

CMA Equalizer • *

LMS Decision Feedback Equalizer • *

LMS Linear Equalizer • *

MLSE Equalizer • •

Normalized LMS Decision Feedback Equalizer • *

Normalized LMS Linear Equalizer • *

RLS Decision Feedback Equalizer • *

RLS Linear Equalizer • *

4-11

4 Block Properties Related to Simulink and Real-Time Workshop

Equalizers Library (Continued)

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Sign LMS Decision Feedback Equalizer • *

Sign LMS Linear Equalizer • *

Variable Step LMS Decision Feedback Equalizer • *

Variable Step LMS Linear Equalizer • *

Error Detection and Correction (Block) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

BCH Decoder • •

BCH Encoder • *

Binary Cyclic Decoder • *

Binary Cyclic Encoder • *

Binary Linear Decoder • *

Binary Linear Encoder • *

Binary-Input RS Encoder • •

Binary-Output RS Decoder • •

Hamming Decoder • *

Hamming Encoder • *

Integer-Input RS Encoder • •

4-12

Communications Block Properties

Error Detection and Correction (Block) Library (Continued)

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Integer-Output RS Decoder • •

LDPC Decoder • •

LDPC Encoder • •

Error Detection and Correction (Convolutional) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

APP Decoder • •

Convolutional Encoder • •

Viterbi Decoder • •

Error Detection and Correction (CRC) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

CRC-N Generator • •

CRC-N Syndrome Detector • •

4-13

4 Block Properties Related to Simulink and Real-Time Workshop

Error Detection and Correction (CRC) Library (Continued)

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

General CRC Generator • •

General CRC Syndrome Detector • •

Interleaving (Block) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Algebraic Deinterleaver • •

Algebraic Interleaver • •

General Block Deinterleaver • •

General Block Interleaver • •

Matrix Deinterleaver • •

Matrix Helical Scan Deinterleaver • •

Matrix Helical Scan Interleaver • •

Matrix Interleaver • •

Random Deinterleaver • •

Random Interleaver • •

4-14

Communications Block Properties

Interleaving (Convolutional) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Convolutional Deinterleaver • •

Convolutional Interleaver • •

General Multiplexed Deinterleaver • •

General Multiplexed Interleaver • •

Helical Deinterleaver • •

Helical Interleaver • •

Modulation (Analog Passband) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

DSB AM Demodulator Passband • *

DSB AM Modulator Passband • *

DSBSC AM Demodulator Passband • *

DSBSC AM Modulator Passband • *

FM Demodulator Passband • *

FM Modulator Passband • *

PM Demodulator Passband • *

PM Modulator Passband • *

4-15

4 Block Properties Related to Simulink and Real-Time Workshop

Modulation (Analog Passband) Library (Continued)

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

SSB AM Demodulator Passband • *

SSB AM Modulator Passband • *

Modulation (Digital Baseband AM) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

General QAM Demodulator Baseband • •

General QAM Modulator Baseband • •

M-PAM Demodulator Baseband • •

M-PAM Modulator Baseband • •

Rectangular QAM Demodulator Baseband • •

Rectangular QAM Modulator Baseband • •

4-16

Communications Block Properties

Modulation (Digital Baseband CPM) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

CPFSK Demodulator Baseband

• (for
frame-based

operation only)
•

CPFSK Modulator Baseband

• (for
frame-based

operation only)
•

CPM Demodulator Baseband

• (for
frame-based

operation only)
•

CPM Modulator Baseband

• (for
frame-based

operation only)
•

GMSK Demodulator Baseband

• (for
frame-based

operation only)
•

GMSK Modulator Baseband

• (for
frame-based

operation only)
•

MSK Demodulator Baseband

• (for
frame-based

operation only)
•

MSK Modulator Baseband

• (for
frame-based

operation only)
•

4-17

4 Block Properties Related to Simulink and Real-Time Workshop

Modulation (Digital Baseband FM) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

M-FSK Demodulator Baseband •

M-FSK Modulator Baseband •

Modulation (Digital Baseband PM) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

BPSK Demodulator Baseband • •

BPSK Modulator Baseband • •

DBPSK Demodulator Baseband • •

DBPSK Modulator Baseband • •

DQPSK Demodulator Baseband • •

DQPSK Modulator Baseband • •

M-DPSK Demodulator Baseband • •

M-DPSK Modulator Baseband • •

M-PSK Demodulator Baseband • •

M-PSK Modulator Baseband • •

OQPSK Demodulator Baseband

• (for
frame-based

operation only)
•

4-18

Communications Block Properties

Modulation (Digital Baseband PM) Library (Continued)

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

OQPSK Modulator Baseband

• (for
frame-based

operation only)
•

QPSK Demodulator Baseband • •

QPSK Modulator Baseband • •

Modulation (Digital Baseband TCM) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

General TCM Decoder • •

General TCM Encoder • *

M-PSK TCM Decoder • •

M-PSK TCM Encoder • *

Rectangular QAM TCM Decoder • •

Rectangular QAM TCM Encoder • *

4-19

4 Block Properties Related to Simulink and Real-Time Workshop

RF Impairments Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Free Space Path Loss • *

I/Q Imbalance • *

Memoryless Nonlinearity • *

Phase Noise • *

Phase/Frequency Offset • *

Receiver Thermal Noise *

Sequence Operations Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Deinterlacer • •

Derepeat
• (single rate

operation)
•

Descrambler • •

Insert Zero • •

Interlacer • •

Puncture • •

Repeat
• (single rate

operation)
•

Scrambler • •

4-20

Communications Block Properties

Source Coding Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

A-Law Compressor • *

A-Law Expander • *

Differential Decoder • *

Differential Encoder • *

Mu-Law Compressor • *

Mu-Law Expander • *

Quantizing Decoder • *

Quantizing Encoder • *

Synchronization (Carrier Phase Recovery) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

CPM Phase Recovery *

M-PSK Phase Recovery *

4-21

4 Block Properties Related to Simulink and Real-Time Workshop

Synchronization (Components) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Baseband PLL *

Charge Pump PLL *

Discrete-Time VCO *

Linearized Baseband PLL *

Phase-Locked Loop *

Continuous-Time VCO N/A

Synchronization (Timing Phase Recovery) Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Early-Late Gate Timing Recovery

• (for
frame-based

operation only)
•

Gardner Timing Recovery

• (for
frame-based

operation only)
•

MSK-Type Signal Timing Recovery

• (for
frame-based

operation only)
•

4-22

Communications Block Properties

Synchronization (Timing Phase Recovery) Library (Continued)

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Mueller-Muller Timing Recovery

• (for
frame-based

operation only)
•

Squaring Timing Recovery

• (for
frame-based

operation only)
*

Utility Blocks Library

Block Triggered
Subsystem

and
Asynchronous

Signal
Support

Embeddable
RTW C-Code

Align Signals *

Bipolar to Unipolar Converter • *

Bit to Integer Converter • •

Complex Phase Difference • *

Complex Phase Shift • *

Data Mapper • *

dB Conversion • *

Find Delay *

Integer to Bit Converter • •

Unipolar to Bipolar Converter • *

4-23

4 Block Properties Related to Simulink and Real-Time Workshop

4-24

Index

IndexA
A-law companders 1-42
Align Signals block

using 2-10
amplitude modulation (AM)

example model 1-93
analog modulation libraries 1-91
analog-to-digital conversion 1-36

B
baseband simulation 1-100

signals in 1-100
binary codes 1-46
binary numbers

order of digits and 1-49
binary vector format 1-47
block coding

features 1-46
methods supported in blockset 1-46
techniques for 1-46
terminology and notation 1-47

block interleaving library 1-81
block-coding library 1-45

C
carrier phase recovery 1-153

example 1-154
supported algorithms 1-154

Channel Coding library 1-45
Channels library 1-126
code generator matrices

representing 1-54
codebooks

representing 1-37
codewords

definition 1-47
representing 1-47

column vector signals 1-4
Comm Filters library 1-119
Comm Sinks library 1-23
Comm Sources library 1-9
companders

example 1-42
compression of data 1-36
compressors

example 1-42
converting analog to digital 1-36
convolutional coding

delays 1-64
convolutional-coding library 1-62
convolutional-interleaving library 1-85
CPFSK carrier phase recovery 1-154
CPM carrier phase recovery 1-154

D
data compression 1-36
data types

block support chart 3-2
decision timing

and eye diagrams 1-24
and scatter diagrams 1-25

delays
convolutional coding 1-64

example model 1-72
digital modulation 1-102
filter blocks 1-121
interleaving 1-86
serial-signal channel coding 1-48

demodulation 1-91
diagrams

example 1-25
eye 1-24
scatter 1-25

digital modulation libraries 1-97

Index-1

Index

E
early-late gate timing recovery 1-148
equalizer blocks 1-165

decision-directed mode 1-167
example 1-168
output signals 1-168
training mode 1-166

equalizers
adaptive 1-165
example model 1-168
MLSE 1-171

Equalizers library 1-164
error-correction capability

of Hamming codes 1-55
of Reed-Solomon codes 1-56

expanders 1-42
example 1-42

eye diagrams 1-24
example 1-25

F
feedback methods 1-144

assumptions 1-147
feedforward methods

carrier phase recovery
example 1-154

timing phase recovery 1-144
example 1-150

filters
post-demodulation 1-93
raised cosine blocks 1-122
square-root raised cosine blocks 1-123

Find Delay block
ADSL model 2-10

frame attribute 1-5
frame-based signals

definition 1-5
full matrix signal

definition 1-5

G
Gardner timing recovery 1-148
generator matrices 1-54
GMSK carrier phase recovery 1-154
GMSK timing recovery 1-149
group delay 1-120

H
Hamming codes 1-55

I
integer format for messages and codewords 1-49
interleaving delays 1-86
Interleaving library 1-81

L
LMS equalizers

example 1-168

M
messages

definition 1-47
representing 1-47

MLSE equalizers 1-171
modulation

analog 1-91
definition 1-91
digital 1-97

Modulation library 1-91
MSK carrier phase recovery 1-154
MSK timing recovery 1-149
mu-law companders 1-42

example 1-42
Mueller-Muller timing recovery 1-149

Index-2

Index

N
nonbinary codes 1-46

Reed-Solomon 1-57
noncausality 1-120

O
one-dimensional arrays

definition 1-4
order of digits in binary numbers 1-49

P
partitions 1-37
passband simulation 1-92
pi/4 DQPSK modulation 1-109
PLLs 1-142
PSK carrier phase recovery 1-154

example 1-154

Q
QAM carrier phase recovery 1-154
quantization

coding 1-41
example 1-38
parameters 1-37
vector 1-36

R
raised cosine filters

blocks 1-122
square-root blocks 1-123

random signals 1-9
Real-Time Workshop

block support chart 4-8
representing

codebooks 1-37
codewords 1-47
generator matrices 1-54

messages 1-47
partitions 1-37
quantization parameters 1-37
truth tables 1-55

row vector signals 1-4

S
sample times

in sources 1-19
sample-based signals

definition 1-5
scalar quantization

coding 1-41
example 1-38
parameters 1-37

scalar signals
definition 1-4

scatter diagrams 1-25
example 1-25

Sinks library 1-23
soft-decision decoding 1-68
Source-Coding library 1-36
Sources library 1-9
squaring timing recovery 1-147

example 1-150
synchronization 1-142

carrier phase recovery 1-153
example 1-154
supported algorithms 1-154

timing phase recovery 1-143
assumptions 1-147
example 1-150
feedback methods 1-144
feedforward method 1-144
restarting 1-145
suitability of algorithms 1-146
supported algorithms 1-143

Synchronization library 1-142

Index-3

Index

T
timing phase recovery 1-143

example 1-150
feedback methods 1-144

assumptions 1-147
feedforward method 1-144
restarting 1-145
suitability of algorithms 1-146
supported algorithms 1-143

timing, decision
and eye diagrams 1-24
and scatter diagrams 1-25

trellis-coded modulation 1-98
triggered subsystem

block support chart 4-8
examples 4-2

truth tables 1-55

V
vector quantization 1-36
vector signals

definition 1-4

Index-4

	toc
	Using the Libraries
	Accessing the Libraries
	Signal Support
	Section Overview
	Signal Terminology
	Matrices, Vectors, and Scalars
	Frame-Based and Sample-Based Signals

	Processing Matrices, Vectors, and Scalars
	Illustrations of Scalar and Vector Processing

	Processing Frame-Based and Sample-Based Signals

	Communications Sources
	Section Overview
	Random Data Sources
	Random Bits
	Random Integers

	Random Noise Generators
	Sequence Generators
	Pseudorandom Sequences
	Synchronization Codes
	Orthogonal Codes

	Sequence Generator Examples
	Pseudorandom Sequences
	Orthogonal Sequences

	Block Parameters
	Sample Time Parameter for Random Sources
	Seed Parameter
	Signal Attribute Parameters for Random Sources

	Communications Sinks
	Section Overview
	Error Statistics
	Scopes
	Eye Diagrams
	Scatter Plots
	Signal Trajectories

	Example: Viewing a Sinusoid
	Example: Viewing a Modulated Signal
	Eye Diagram of a Modulated Signal
	Scatter Plot of a Modulated Signal
	Signal Trajectory of a Modulated Signal

	Source Coding
	Section Overview
	Representing Quantization Parameters
	Partitions
	Codebooks

	Quantizing a Signal
	Scalar Quantization Example 1
	Scalar Quantization Example 2
	Determining Which Interval Each Input Is In

	Companding a Signal
	Example: Using a µ-Law Compander

	Selected Bibliography for Source Coding

	Block Coding
	Section Overview
	Block-Coding Features of the Blockset
	Communications Toolbox Support Functions
	Channel-Coding Terminology
	Data Formats for Block Coding
	Binary Format (All Coding Methods)
	Integer Format (Reed-Solomon Only)

	Using Block Encoders and Decoders Within a Model
	Examples of Block Coding
	Example: Hamming Code in Binary Format
	Example: Reed-Solomon Code in Integer Format

	Notes on Specific Block-Coding Techniques
	Generic Linear Block Codes
	Cyclic Codes
	Hamming Codes
	BCH Codes
	Reed-Solomon Codes

	Shortening, Puncturing, and Erasures
	Reed Solomon Examples with Shortening, Puncturing, and Erasures

	Selected Bibliography for Block Coding

	Convolutional Coding
	Section Overview
	Convolutional-Coding Features of the Blockset
	Parameters for Convolutional Coding
	Using the Polynomial Description in Blocks

	Example: A Rate 2/3 Feedforward Encoder
	How to Determine Coding Parameters
	How to Simulate the Encoder
	Notes on the Model

	Implementing a Systematic Encoder with Feedback
	Example: Soft-Decision Decoding
	Overview of the Simulation
	Defining the Convolutional Code
	Mapping the Received Data
	Decoding the Convolutional Code
	Delay in Received Data
	Comparing Simulation Results with Theoretical Results

	Selected Bibliography for Convolutional Coding

	Cyclic Redundancy Check Coding
	Section Overview
	CRC-Coding Features of the Blockset
	CRC Algorithm
	Example

	Selected Bibliography for CRC Coding

	Interleaving
	Section Overview
	Block Interleavers
	Types of Block Interleavers
	Example: Block Interleavers

	Convolutional Interleavers
	Types of Convolutional Interleavers
	Delays of Convolutional Interleavers
	Example: Convolutional Interleavers

	Selected Bibliography for Interleaving

	Analog Modulation
	Section Overview
	Analog Modulation Features of the Blockset
	Representing Signals for Analog Modulation
	Sampling Issues in Analog Modulation
	Filter Design Issues
	Example: Varying the Filter’s Cutoff Frequency

	Digital Modulation
	Section Overview
	Accessing Digital Modulation Blocks
	Digital Modulation Features of the Blockset
	General and Specific Modulation Methods

	Baseband Modulated Signals
	Representing Signals for Digital Modulation
	Binary-Valued and Integer-Valued Signals

	Delays in Digital Modulation
	First Output Sample in DPSK Demodulation
	Example: Delays from Demodulation

	Upsampled Signals and Rate Changes
	Illustrations of Size or Rate Changes

	Examples of Digital Modulation
	DQPSK Signal Constellation Points and Transitions
	Rectangular QAM Modulation and Scatter Diagram
	Phase Tree for Continuous Phase Modulation

	Setting Noise Variance for Computing LLRs
	Eb/No Mode
	Es/No Mode
	SNR Mode

	Selected Bibliography for Digital Modulation

	Communications Filters
	Section Overview
	Filter Features of the Blockset
	Group Delay of a Filter
	Implications of Delay for Simulations

	Filtering with Raised Cosine Filter Blocks
	Combining Two Square-Root Raised Cosine Filters

	Example: Using Raised Cosine Filters
	Selected Bibliography for Communications Filters

	Channels
	Section Overview
	AWGN Channel
	Fading Channels
	Compensating for Fading
	Choosing and Configuring a Fading Channel Block
	Visualizing a Multipath Rayleigh Fading Channel
	Examples Using Fading Channels

	Binary Symmetric Channel
	Selected Bibliography for Channels

	RF Impairments
	Section Overview
	Types of RF Impairments that the Blocks Model
	Nonlinearity and I/Q Imbalance
	Phase/Frequency Offsets and Phase Noise
	Receiver Thermal Noise and Free Space Path Loss

	Scatter Plot Examples
	Memoryless Nonlinearity Block
	I/Q Imbalance Block
	Phase/Frequency Offset Block
	Phase Noise Block

	Example Using the RF Impairments Library Blocks
	Overview of the Model

	Synchronization
	Section Overview
	Timing Phase Recovery
	Supported Algorithms for Timing Phase Recovery
	Feedforward Method for Timing Phase Recovery
	Squaring Timing Recovery block

	Feedback Methods for Timing Phase Recovery
	Restarting the Phase Estimating Process During the Simulation

	Choosing a Method for Timing Phase Recovery
	Squaring Timing Recovery Block
	Assumptions Common to All Feedback Method Blocks
	Early-Late Gate Timing Recovery Block
	Gardner Timing Recovery Block
	MSK-Type Signal Timing Recovery Block
	Mueller-Muller Timing Recovery Block

	Examples of Timing Phase Recovery
	Squaring Timing Phase Recovery Example
	Results of the Simulation

	Carrier Phase Recovery
	Supported Algorithms for Carrier Phase Recovery
	Carrier Phase Recovery Example
	Results of the Simulation
	Exploring the Simulation Further

	Components
	Voltage-Controlled Oscillator Blocks
	Overview of PLL Simulation
	Implementing an Analog Baseband PLL
	Implementing a Digital PLL

	Selected Bibliography for Synchronization

	Equalizers
	Section Overview
	Sources of Background Material
	Equalization Features of the Blockset
	Using Adaptive Equalizers
	Specifying the Signal Constellation of the Modulated Signal
	Equalizing Using a Training Sequence
	Equalizing in Decision-Directed Mode
	Controlling the Use of Training or Decision-Directed Mode
	Retrieving the Weights and Error Signal

	Example: LMS Linear Equalizer
	Scatter Plots in the Example

	Using MLSE Equalizers

	Modeling Communication Systems
	Computing Delays
	Section Overview
	Other References for Delays
	Sources of Delays
	ADSL Demo Model
	Frame Periods in the Model
	Path for Interleaved Data

	Punctured Coding Model
	Frame Periods in the Model
	Inner Error Rate Block
	Outer Error Rate Block

	Using the Find Delay and Align Signals Blocks
	Using the Find Delay Block to Determine the Correct Receive Dela
	Using the Align Signals Block Before Computing the Error Rate

	Manipulating Delays
	Section Overview
	Delays and Alignment Problems
	Observing the Problem
	Correcting the Delays

	Aligning Words of a Block Code
	Misalignment of Codewords
	Inserting a Delay to Correct the Alignment
	Using the Find Delay Block

	Aligning Words for Interleaving
	Misalignment of Interleaved Words
	Inserting a Delay to Correct the Alignment
	Checking Alignment of Block Codewords
	Computing Delays to Configure the Error Rate Calculation Blocks

	Aligning Words of a Concatenated Code
	Misalignment of Block Codewords
	Inserting a Delay to Correct the Alignment
	Computing Delays to Configure the Error Rate Calculation Blocks

	Data Type Support
	Communications Block Data Type Support

	Block Properties Related to Simulink and Real-Time Workshop
	Communications Blocks in Triggered Subsystems
	Section Overview
	Example 1: A Basic Triggered Subsystem
	Example 2: Importance of the Block Location

	Communications Block Properties

	Index

	tables
	General and Specific Blocks
	Delays Resulting from Digital Modulation or Demodulation
	Processing of Upsampled Modulated Data (Except OQPSK Method)
	Supported PLLs in Components Library
	Channels Library
	Communications Filters Library
	Communications Sinks Library
	Communications Sources (Noise Generators) Library
	Communications Sources (Random Data Sources) Library
	Communications Sources (Sequence Generators) Library
	Equalizers Library
	Error Detection and Correction (Block) Library
	Error Detection and Correction (Convolutional) Library
	Error Detection and Correction (CRC) Library
	Interleaving (Block) Library
	Interleaving (Convolutional) Library
	Modulation (Analog Passband) Library
	Modulation (Digital Baseband AM) Library
	Modulation (Digital Baseband CPM) Library
	Modulation (Digital Baseband FM) Library
	Modulation (Digital Baseband PM) Library
	Modulation (Digital Baseband TCM) Library
	RF Impairments Library
	Sequence Operations Library
	Source Coding Library
	Synchronization (Carrier Phase Recovery) Library
	Synchronization (Components) Library
	Synchronization (Timing Phase Recovery) Library
	Utility Library
	Channels Library
	Communications Filters Library
	Communications Sinks Library
	Communications Sources (Noise Generators) Library
	Communications Sources (Random Data Sources) Library
	Communications Sources (Sequence Generators) Library
	Equalizers Library
	Error Detection and Correction (Block) Library
	Error Detection and Correction (Convolutional) Library
	Error Detection and Correction (CRC) Library
	Interleaving (Block) Library
	Interleaving (Convolutional) Library
	Modulation (Analog Passband) Library
	Modulation (Digital Baseband AM) Library
	Modulation (Digital Baseband CPM) Library
	Modulation (Digital Baseband FM) Library
	Modulation (Digital Baseband PM) Library
	Modulation (Digital Baseband TCM) Library
	RF Impairments Library
	Sequence Operations Library
	Source Coding Library
	Synchronization (Carrier Phase Recovery) Library
	Synchronization (Components) Library
	Synchronization (Timing Phase Recovery) Library
	Utility Blocks Library

